Controlled regularity at future null infinity from past asymptotic initial data: the wave equation

Jordan Marajh¹,

Grigalius Taujanskas², Juan A. Valiente Kroon¹

¹GAnG, Queen Mary University of London

²DPMMS, University of Cambridge

Virtual Infinity Seminar, Dec 2025

Outline

- Motivation
- 2 Geometric set-up
- Formulation of the problem
- Main results
- Sketch of the proof
- 6 Future directions

My supervisor told me to?

Follow on from arXiv:2304.08270 [TV23]!

It's the 1960s. Lax and Phillips [LP64] have produced a scattering theory for particle interactions using some very formal methods. Within a couple of years, Penrose introduces the compactification of non-compact pseudo-Riemannian manifolds into a compact manifold with boundary describing infinity [Pen63; Pen65].

Fast-forward 20 years. Friedlander has then combined these two completely independent notions together to form what is known as conformal scattering theory [Fri62; Fri64; Fri80].

With the notion of the conformal boundary now available, it raises a question: how is the past and future asymptotic data of massless fields related to each other?

Take an asymptotically flat pseudo-Riemannian manifold. Then the conformal boundary $\mathscr I$ is a null hypersurface. So, a conformal scattering problem here takes the form of a characteristic initial value problem with data prescribed on $\mathscr I$ [Pen80; Fri80].

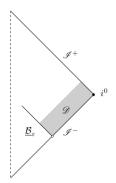


Figure: The domain of interest for the wave equation.

- Refining our question from earlier: how does the gravitational radiation of physical objects and the regularity of the past conformal boundary \mathscr{I}^- affect the structure of solutions at the future \mathscr{I}^+ ?
- One answer: There is polyhomogeneous behaviour towards \mathscr{I}^+ . If $\Omega \geq 0$ denotes the boundary defining function for the manifold M with $\Omega^{-1}(0) = \partial M$, then solutions contain terms in their expansions towards the boundary which look like $\Omega^{\alpha} \log^{\beta} \Omega$ [Fri98b; CK93; LR10; HV17; Lin17; KK25].

Einstein's field equations are very nonlinear and are partially responsible for this.

Geometric set-up

Here, we encounter *the problem of spatial infinity* [Fri98b; Val04a; Val04b; GV17; DF17; BDFW12].

Studying the wave equation as a characteristic initial value problem with data on past null infinity \mathscr{I}^- implies that we need a better representation of spatial infinity.

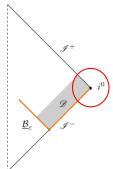


Figure: The domain of interest for the wave equation.

Geometric set-up

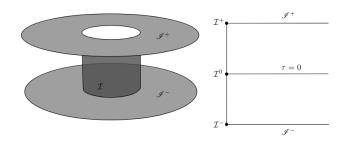


Figure: Friedrich's cylinder at spatial infinity [Fri98a].

The coordinate transformation

$$ho = rac{r}{r^2 - t^2}, \quad au = rac{t}{r}, \quad \left(\Omega =
ho(1 + au)(1 - au) \equiv rac{1}{r}
ight)$$

and the geometric blow-up together give what we call the F-gauge.

Main theorem

Theorem (rough version)

Solutions to the wave equation near spatial infinity in the Minkowski spacetime with sufficiently regular asymptotic characteristic initial data at past null infinity \mathscr{I}^- and a short incoming null hypersurface $\mathcal{B}_{\varepsilon}$ possess suitably regular asymptotic expansions in a neighbourhood of spatial infinity i^0 , and in particular exhibit peeling at future null infinity \mathscr{I}^+ .

Formulation of the problem

ullet Re-cast the wave equation on Minkowski space $(\mathbb{R}_t imes \mathbb{R}^3_x, ilde{oldsymbol{\eta}})$,

$$\Box_{\tilde{\boldsymbol{\eta}}}\tilde{\phi} \equiv \left(\partial_t^2 - \sum_{i=1}^3 \partial_{x^i}^2\right)\tilde{\phi} = 0,$$

as a symmetric hyperbolic system [Kat75] (cf. [Ren90; Luk12]) in the F-gauge.

$$\left(\Box_{m{\eta}}\phi=(1- au^2)\partial_{ au}^2\phi+2 au
ho\partial_{ au}\partial_{
ho}\phi-
ho^2\partial_{
ho}^2\phi-2 au\partial_{ au}\phi-\Delta_{\mathbb{S}^2}\phi=0.
ight)$$

Defining the variables,

$$\psi = \sqrt{2}\partial_{\tau}\phi, \qquad \psi_0 = \frac{1}{\sqrt{2}}\boldsymbol{X}_{-}\phi,$$

$$\psi_1 = -\frac{1}{\sqrt{2}}(\tau\partial_{\tau}\phi + \rho\partial_{\rho}\phi), \qquad \psi_2 = -\frac{1}{\sqrt{2}}\boldsymbol{X}_{+}\phi,$$

so that we have the system of equations to find some related conserved quantities...

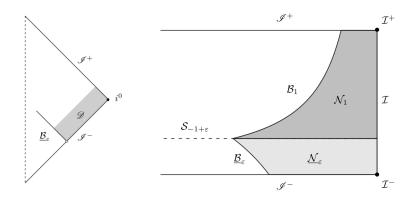
Formulation of the problem

 The equations one gets from the symmetric hyperbolic system in terms of the auxiliary variables are as follows

$$\begin{split} A_0 &\equiv (1+\tau)\partial_\tau \psi_2 - \rho \partial_\rho \psi_2 - \frac{1}{2} \textbf{\textit{X}}_- \psi - \textbf{\textit{X}}_- \psi_1 = 0, \\ B_0 &\equiv (1-\tau)\partial_\tau \psi_1 + \rho \partial_\rho \psi_1 + \frac{1}{2} \left((1-\tau)\partial_\tau \psi + \rho \partial_\rho \psi \right) \\ &- \textbf{\textit{X}}_+ \psi_2 - \frac{1}{2} \psi - \psi_1 = 0, \\ A_1 &\equiv (1+\tau)\partial_\tau \psi_1 - \rho \partial_\rho \psi_1 - \frac{1}{2} \left((1+\tau)\partial_\tau \psi - \rho \partial_\rho \psi \right) \\ &- \textbf{\textit{X}}_- \psi_0 - \frac{1}{2} \psi + \psi_1 = 0, \\ B_1 &\equiv (1-\tau)\partial_\tau \psi_0 + \rho \partial_\rho \psi_0 + \frac{1}{2} \textbf{\textit{X}}_+ \psi - \textbf{\textit{X}}_+ \psi_1 = 0. \end{split}$$

• Applying the operator $D \equiv \partial_{\rho}^{\rho} \partial_{\tau}^{q} \mathbf{Z}^{\alpha}$ to each equation in and multiplying by $\overline{D\psi_{k}}$ and $\overline{D\psi}$ in an appropriate combination yields the following higher-order currents,

$$\begin{split} 0 &= 2\,\text{Re}\left(\overline{D\psi_2}DA_0 + \overline{D\psi_1}DB_0\right) + \text{Re}\left(\overline{D\psi}DB_0\right), \\ 0 &= 2\,\text{Re}\left(\overline{D\psi_1}DA_1 + \overline{D\psi_0}DB_1\right) - \text{Re}\left(\overline{D\psi}DA_1\right). \end{split}$$



Theorem 1

Let $\rho_\star>0, 0<\varepsilon\ll 1$ be real numbers and $m\in\mathbb{N}$ be an integer. Given data on the past conformal boundary \mathscr{I}^- and on a short incoming null hypersurface that is sufficiently regular, the wave equation admits a unique solution with the expansion

$$\phi = \sum_{p'=0}^{m+4} \frac{1}{p'!} \phi^{(p')} \left(\tau, t^{\mathbf{A}}_{\mathbf{B}} \right) \rho^{p'} + C^{m,\alpha}$$

at the future conformal boundary \mathscr{I}^+ where $0 < \alpha \leq \frac{1}{2}$.

The τ -dependence of the coefficients of the expansion can be computed explicitly in terms of solutions to Jacobi ODEs [Sze78].

Theorem 1 (technical version)

Let $\rho_*>0$, $0<\varepsilon\ll 1$ be real numbers and $m\in\mathbb{N}$ be an integer. Suppose the asymptotic characteristic data for $\Box\phi=0$ for the components $f\in\{\psi,\psi_0,\psi_1,\psi_2\}$ on $\mathscr{I}^-_{\rho_\star}\cup\underline{\mathcal{B}}_\varepsilon$ has the regularity

$$(f, \partial_{\nmid} f, \dots, \partial_{\nmid}^{4m+23} f) \in H^{4m+23} \times H^{4m+22} \times \dots \times L^2, \tag{6.1}$$

where ∂_{\parallel} denotes a transverse derivative to \mathscr{I}^- or $\underline{\mathcal{B}}_{\varepsilon}$, i.e. $\partial_{\parallel}=\partial_{\tau}$ on \mathscr{I}^- and $\partial_{\parallel}=\partial_{\rho}$ on $\underline{\mathcal{B}}_{\varepsilon}$. Additionally, suppose that

$$\phi|_{\mathscr{I}^{-}} \in H^{4m+24}(\mathscr{I}^{-}_{\rho_{\star}}) \quad \text{and} \quad \phi|_{\underline{\mathcal{B}}_{\varepsilon}} \in H^{4m+24}(\underline{\mathcal{B}}_{\varepsilon}).$$
 (6.2)

Then, in the domain $\mathscr{D} \equiv \underline{\mathcal{N}}_{\varepsilon} \cup \mathcal{N}_1$, this data gives rise to a unique solution to the wave equation which near \mathscr{I}^+ admits the Taylor-like expansion from before.

Theorem 2

Under the assumptions of Theorem 1, the expansion of the solution

$$\sum_{p'=0}^{m+4} \frac{1}{p'!} \phi^{(p')} \left(\tau, t^{\mathbf{A}}_{\mathbf{B}} \right) \rho^{p'}$$

does not contain logarithmic divergences at $\tau=\pm 1$. In fact, these terms are analytic in τ at $\tau=\pm 1$.

Question: Were you paying attention?

- This was not the generic behaviour predicted (solutions are not polyhomogeneous)! We can still obtain a "nice" class of solutions, i.e. solutions which peel in physical coordinates on the non-compact manifold, under these assumptions.
- These results subsume the physical assumption, the no-incoming radiation condition [Som12; Som92; Mad70], from \mathscr{I}^- .

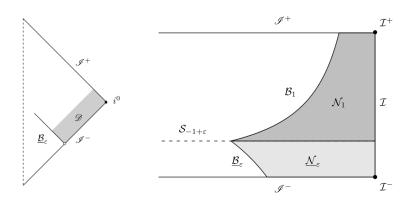
Or in coordinates on the physical spacetime,

$$\tau = 1 + \frac{u}{r}, \qquad \rho = -\frac{1}{u\left(2 + \frac{u}{r}\right)},$$

$$\tilde{\phi} = \frac{1}{r} \left(\tilde{\varphi}^{(0)}(1, t^{\mathbf{A}}_{\mathbf{B}}) + \sum_{p=0}^{m+4} \frac{1}{p!} \left(\frac{-1}{2u} \right)^p \varphi^{(p)}(1, t^{\mathbf{A}}_{\mathbf{B}}) + \mathcal{O}\left(\frac{1}{u^{m+5}} \right) \right).$$

Sketch of the proof

Recall the setting we wish to understand.



On conserved quantities...

Expand the first current

$$0=2\,\text{Re}\left(\overline{D\psi_{2}}\textit{DA}_{0}+\overline{D\psi_{1}}\textit{DB}_{0}\right)+\text{Re}\left(\overline{D\psi}\textit{DB}_{0}\right)$$

to see some recurring structure to make some arguments easier.

$$0 = \begin{pmatrix} \partial_{\tau} \\ \partial_{\rho} \end{pmatrix} \cdot \begin{pmatrix} (1+\tau)|D\psi_{2}|^{2} + (1-\tau)|D\psi_{1}|^{2} + \frac{1}{4}(1-\tau)|D\psi|^{2} + (1-\tau)\operatorname{Re}\left(\overline{D\psi}D\psi_{1}\right) \\ -\rho|D\psi_{2}|^{2} + \rho|D\psi_{1}|^{2} + \frac{1}{4}\rho|D\psi|^{2} + \rho\operatorname{Re}\left(\overline{D\psi}D\psi_{1}\right) \end{pmatrix} \\ - Z^{\alpha} \mathbf{X}_{+} (\partial_{\rho}^{\rho}\partial_{\tau}^{q}\psi_{2})\mathbf{Z}^{\alpha} (\partial_{\rho}^{\rho}\partial_{\tau}^{q}\overline{\psi_{1}}) - \mathbf{Z}^{\alpha} (\partial_{\rho}^{\rho}\partial_{\tau}^{q}\psi_{2})\mathbf{Z}^{\alpha} \mathbf{X}_{+} (\partial_{\rho}^{\rho}\partial_{\tau}^{q}\overline{\psi_{1}}) \\ - Z^{\alpha} \mathbf{X}_{-} (\partial_{\rho}^{\rho}\partial_{\tau}^{q}\psi_{1})\mathbf{Z}^{\alpha} (\partial_{\rho}^{\rho}\partial_{\tau}^{q}\overline{\psi_{2}}) - \mathbf{Z}^{\alpha} (\partial_{\rho}^{\rho}\partial_{\tau}^{q}\psi_{1})\mathbf{Z}^{\alpha} \mathbf{X}_{-} (\partial_{\rho}^{\rho}\partial_{\tau}^{q}\overline{\psi_{2}}) \\ - \frac{1}{2} \left(\mathbf{Z}^{\alpha} \mathbf{X}_{+} (\partial_{\rho}^{\rho}\partial_{\tau}^{q}\psi_{2})\mathbf{Z}^{\alpha} (\partial_{\rho}^{\rho}\partial_{\tau}^{q}\overline{\psi}) + \mathbf{Z}^{\alpha} (\partial_{\rho}^{\rho}\partial_{\tau}^{q}\psi_{2})\mathbf{Z}^{\alpha} \mathbf{X}_{+} (\partial_{\rho}^{\rho}\partial_{\tau}^{q}\overline{\psi}) \right) \\ - 2(\rho - q)|D\psi_{2}|^{2} + 2(\rho - q - 1)|D\psi_{1}|^{2} + \frac{1}{2}(\rho - q - 1)|D\psi_{1}|^{2} + 2(\rho - q - 1)\operatorname{Re}\left(\overline{D\psi}D\psi_{1}\right) \end{pmatrix}$$

On expansions...

- Once you run the energy estimates using the above scheme, one can obtain that, for instance, that p ρ -derivatives of the auxiliary variables belong to a Sobolev space which one can embed into some Hölder spaces losing 3 derivatives in our case.
- For $k \in \{0, 1, 2\}$ and p > m + 1,

$$\partial_{\rho}^{p}\psi, \ \partial_{\rho}^{p}\psi_{k}\in H^{m}(\mathcal{N}_{1})\hookrightarrow C^{r,\alpha}(\mathcal{N}_{1}),$$

for r a positive integer and $\alpha \in (0,1)$ satisfying $r+\alpha=m-\frac{5}{2}$ and $m\geq 3$. Equivalently, $m\geq r+\alpha+\frac{5}{2}$. Restricting to $\alpha\leq \frac{1}{2}$, we have

$$\partial_{\rho}^{p}\psi,\ \partial_{\rho}^{p}\psi_{k}\in H^{r+3}(\mathcal{N}_{1})\hookrightarrow C^{r,\alpha}(\mathcal{N}_{1})$$

whenever $p > m + 1 \ge r + 4$.

Future directions

- A similar result of this kind would be excellent to understand on a black hole background, to see what effects the curvature has on the estimates used to prove such a result (cf. [Mas22; Mas24; Keh24]).
 And, to see how much the conclusion of the theorems change, i.e. can sufficiently smooth data give rise to polyhomogeneous behaviour?
- One may ask if the set-up/tools was restricted from the beginning [MV21]. To this end, we may approach this problem in a new manner by combining the b-calculus that is used in the school of Melrose (notable texts [Mel95; HV17]) together with Friedrich's cylinder to gain deeper insights into asymptotic behaviour in this corner of the compact manifold.
 - This is ongoing work:)
- Release a new paper from Overleaf prison.

References I

- [Som12] A. Sommerfeld. "Die Greensche Funktion der Schwingungsgleichung". In: *Jahresbericht der Deutschen Mathematiker-Vereinigung* 21 (1912), pp. 309–352.
- [Fri62] F. G. Friedlander. "On the Radiation Field of Pulse Solutions of the Wave Equation". In: *Proc. R. Soc. London A* 269.1336 (1962), pp. 53–65.
- [Pen63] R. Penrose. "Asymptotic properties of fields and space-times". In: *Phys. Rev. Lett.* 10 (1963), p. 66.
- [Fri64] F. G. Friedlander. "On the Radiation Field of Pulse Solutions of the Wave Equation II". In: Proc. R. Soc. London A 279 (1964), pp. 386–394.
- [LP64] P. D. Lax and R. S. Phillips. "Scattering theory". In: *Bull. Amer. Math. Soc.* 70.1 (1964), pp. 130–142.

References II

- [Pen65] R. Penrose. "Zero rest-mass fields including gravitation: asymptotic behaviour". In: *Proc. Roy. Soc. Lond. A* 284 (1965), p. 159.
- [Mad70] J. Madore. "Gravitational radiation from a bounded source I". In: Ann. Inst. Henri Poincaré XII (1970), p. 285.
- [Kat75] T. Kato. "The Cauchy problem for quasi-linear symmetric hyperbolic systems". In: Arch. Ration. Mech. Anal. 58 (1975), p. 181.
- [Sze78] G. Szegö. Orthogonal polynomials. Vol. 23. AMS Colloq. Pub. AMS, 1978.
- [Fri80] F. G. Friedlander. "Radiation fields and hyperbolic scattering theory". In: *Mathematical Proceedings of the Cambridge Philosophical Society* 88.3 (1980), pp. 483–515.

References III

- [Pen80] R. Penrose. "Null hypersurface initial data for classical fields of arbitrary spin and for general relativity". In: *Gen. Rel. Grav.* 12 (1980), p. 225.
- [Ren90] A. D. Rendall. "Reduction of the characteristic initial value problem to the Cauchy problem and its application to the Einstein equations". In: Proc. Roy. Soc. Lond. A 427 (1990), p. 221.
- [Som92] A. Sommerfeld. Vorlesungen über Theoretische Physik: Partielle Differentialgleichungen der Physik. Vol. VI. Verlag Harri Deutsch, 1992.
- [CK93] D. Christodoulou and S. Klainerman. The global nonlinear stability of the Minkowski space. Princeton University Press, 1993.

References IV

- [Mel95] R. B. Melrose. Geometric scattering theory. Cambridge University Press, 1995.
- [Fri98a] H. Friedrich. "Einstein's equation and geometric asymptotics". In: Proceedings of the GR-15 conference.
 Ed. by N. Dadhich and J. Narlinkar. Inter-University Centre for Astronomy and Astrophysics, 1998, p. 153.
- [Fri98b] H. Friedrich. "Gravitational fields near space-like and null infinity". In: *J. Geom. Phys.* 24 (1998), p. 83.
- [Val04a] J. A. Valiente Kroon. "A new class of obstructions to the smoothness of null infinity". In: Comm. Math. Phys. 244 (2004), p. 133.
- [Val04b] J. A. Valiente Kroon. "Asymptotic expansions of the Cotton-York tensor on slices of stationary spacetimes". In: Class. Quantum Grav. 21 (2004), p. 3237.

References V

- [LR10] H. Lindblad and I. Rodnianski. "The global stability of Minkowski space-time in harmonic gauge". In: *Ann. Math.* 171 (3 2010), pp. 1401–1477.
- [BDFW12] F. Beyer, G. Doulis, J. Frauendiener, and B. Whale. "Numerical space-times near space-like and null infinity. The spin-2 system on Minkowski space". In: *Class. Quantum Grav.* 29 (2012), p. 245013.
- [Luk12] J. Luk. "On the local existence for the characteristic initial value problem in General Relativity". In: *Int. Math. Res. Not.* 20 (2012), p. 4625.
- [DF17] G. Doulis and J. Frauendiener. "Global simulations of Minkowski spacetime including spacelike infinity". In: Phys. Rev. D 95 (2017), p. 024035.

References VI

- [GV17] E. Gasperín and J.A. Valiente Kroon. "Polyhomogeneous expansions from time symmetric initial data". In: *Class. Quantum Grav.* 34 (2017), p. 195007.
- [HV17] P. Hintz and A. Vasy. "A global analysis proof of the stability of Minkowski space and the polyhomogeneity of the metric". In: (2017). arXiv: 1711.00195 [math.AP].
- [Lin17] H. Lindblad. "On the Asymptotic Behavior of Solutions to the Einstein Vacuum Equations in Wave Coordinates". In: Comm. Math. Phys. 353 (1 2017), pp. 135–184.
- [MV21] M. Magdy Ali Mohammed and J.A. Valiente Kroon. "A comparison of Ashtekar's and Friedrich's formalisms of spatial infinity". In: (2021).

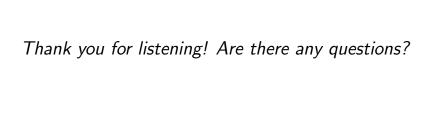
References VII

- [Mas22] Hamed Masaood. "A scattering theory for linearised gravity on the exterior of the Schwarzschild black hole I: The Teukolsky equations". In: Comm. Math. Phys. 393.1 (2022), pp. 477–581. DOI: 10.1007/s00220-022-04372-3.
- [TV23] G. Taujanskas and J. A. Valiente Kroon. "Controlled regularity at future null infinity from past asymptotic initial data: massless fields". In: (2023). arXiv: 2304.08270 [gr-qc].
- [Keh24] L. Kehrberger. "The Case Against Smooth Null Infinity IV: Linearised Gravity Around Schwarzschild – An Overview". In: Phil. Trans. R. Soc. A 382 (2024), p. 20230039.
- [Mas24] H. Masaood. "A scattering theory for linearised gravity on the exterior of the Schwarzschild black hole II: The full system". In: Adv. in Math. 452 (2024), p. 109785.

References VIII

[KK25]

I. Kadar and L. Kehrberger. "Scattering, Polyhomogeneity and Asymptotics for Quasilinear Wave Equations From Past to Future Null Infinity". In: (2025). arXiv: 2501.09814 [math.AP].



The wave equation as a symmetric hyperbolic system

$$\begin{split} \mathcal{D}\phi &= \psi, \\ \mathcal{D}\psi + 2\mathcal{D}^{\boldsymbol{A}\boldsymbol{B}}\psi_{\boldsymbol{A}\boldsymbol{B}} &= 0, \\ \frac{4}{(\boldsymbol{A} + \boldsymbol{B})!(2 - \boldsymbol{A} - \boldsymbol{B})!} \left(\mathcal{D}\psi_{\boldsymbol{A}\boldsymbol{B}} - \mathcal{D}_{\boldsymbol{A}\boldsymbol{B}}\psi + 2\mathcal{D}_{(\boldsymbol{A}}{}^{\boldsymbol{Q}}\psi_{\boldsymbol{B})\boldsymbol{Q}} \right) &= 0, \end{split}$$