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» Spectral instability of black hole

quasinormal modes

» Asymptotic modes, instability in the

high overtones and low-lying
modes

Gravitational wave echoes,
reflectionless modes, and Regge
poles

Stable observables in the context
of spectral instability
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» Introduction: Asymptotic black hole quasinormal modes (QNM) and

» Greybody factor, scattering amplitude

+ Regge poles and scattering process

» Implementation of the matrix method in hyperboloidal coordinates
+ Greybody factor as a stable observable in terms of Regge poles

+ Speculations about potential observational implications

Outline

spectral instability
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+» QNMs are characteristic modes of a dissipative
system

+ They are typically manifested as one perturbs
around a static or stationary state

« Originally associated with stability analysis
+ Classical concept
« Quantum implications due to AdS/CFT (via the Kubo formula)

+ Structural instability

» Implication of the methods used to solve for the QNM %
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The (simplified) master equation




The Regge-Wheeler Potential
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Th e B I G p i Ctu re (a potential barrier instead of a well)




"““E’“‘"’"" Methods for QNM

S An incomplete list of primarily analytic and semi-analytic means)

+ WKB

« Green function (Fourier or Laplace transforms)

« Poschl-Teller

< Singularity in transition amplitudes

+ Continued fraction (expansion and convergence)
Monodromy (Motl’'s approach)

+ Matrix method and pseudo spectrum method
Time Evolution + Prony method

+ Many other options
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’“ﬁ“’**—“ Methods for asymptotic QNM

i

An incomplete list of primarily analytic and semi-analytic means)

+ WKB (revised, employing Stokes lines)
« Green function (asymptotic poles)

« Poschl-Teller (entirely analytic)

« Singularity in transition amplitudes

« Continued fraction (Nollert’s refinement)
« Monodromy (Motl's approach)

+ (not so many) other options
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~Black hole structural instability

PHYSICAL REVIEW D VOLUME 53, NUMBER 8 15 APRIL 1996

About the significance of quasinormal modes of black holes

Hans-Peter Nollert
Theoretische Astrophysik, Computational Physics, Universitat Tubingen 72076 Tubingen, Germany

(Received 23 October 1995)

Quasinormal modes have played a prominent role in the discussion of perturbations of black holes, and the
question arises whether they are as significant as normal modes are for self-adjoint systems, such as harmonic
oscillators. They can be significant in two ways: Individual modes may dominate the time evolution of some
perturbation, and a whole set of them could be used to completely describe this time evolution. It is known that
quasinormal modes of black holes have the first property, but not the second. It has recently been suggested
that a discontinuity in the underlying system would make the corresponding set of quasinormal modes com-
plete. We therefore turn the Regge-Wheeler potential, which describes perturbations of Schwarzschild black
holes, into a series of step potentials, hoping to obtain a set of quasinormal modes which shows both of the
above properties. This hope proves to be futile, though: The resulting set of modes appears to be complete, but
it no longer contains any individual mode which is directly obvious in the time evolution of initial data. Even
worse, the quasinormal frequencies obtained in this way seem to be extremely sensitive to very small changes
in the underlying potential. The question arises whether, and how, it is possible to make any definite statements
about the significance of quasinormal modes of black holes at all, and whether it could be possible to obtain a
set of quasinormal modes with the desired properties in another way.

PACS number(s): 04.70.Bw, 97.60.Lf



~Black hole structural instability
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~Black hole structural instability

PHYSICAL REVIEW D 101, 104009 (2020)

Significance of black hole quasinormal modes: A closer look

Ramin G. Daghigh ,'* Michael D. Green,” and Jodin C. Morey 4
'William 1. Fine Theoretical Physics Institute, University of Minnesota,
Minneapolis, Minnesota 55455, USA
’Natural Sciences Department, Metropolitan State University, Saint Paul, Minnesota 55106, USA
SMathematics and Statistics Department, Metropolitan State University,
Saint Paul 55106, Minnesota, USA
*School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455, USA

® (Received 28 February 2020; accepted 21 April 2020; published 5 May 2020)

It is known that approximating the Regge-Wheeler potential with step functions significantly modifies
the Schwarzschild black hole quasinormal mode spectrum. Surprisingly, this change in the spectrum has
little impact on the ringdown waveform. We examine whether this issue is caused by the jump
discontinuities and/or the piecewise constant nature of step functions. We show that replacing the step
functions with a continuous piecewise linear function does not qualitatively change the results. However, in
contrast to previously published results, we discover that the ringdown waveform can be approximated to
arbitrary precision using either step functions or a piecewise linear function. Thus, this approximation
process provides a new mathematical tool to calculate the ringdown waveform. In addition, similar to
normal modes, the quasinormal modes of the approximate potentials seem to form a complete set that
describes the entire time evolution of the ringdown waveform. We also examine smoother approximations
to the Regge-Wheeler potential, where the quasinormal modes can be computed exactly, to better
understand how different portions of the potential impact various regions of the quasinormal mode
spectrum.

DOI: 10.1103/PhysRevD.101.104009
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PHYSICAL REVIEW D 103, 024019 (2021)

Asymptotical quasinormal mode spectrum for piecewise
approximate effective potential

Wei-Liang Qian ,b**" Kai Lin,*? Cai-Ying Shao,” Bin \?Vang,1 and Rui-Hong Yue'
' Center Jfor Gravitation and Cosmology, College of Physical Science and Technology,
Yangzhou University, 225009, Yangzhou, China
*Institute for Theoretical Physics and Cosmology, Zhejiang University of Technology,
310032 Hangzhou, China
*Escola de Engenharia de Lorena, Universidade de Sdo Paulo, 12602-810 Lorena, SP, Brazil
*Hubei Subsurface Multi-scale Imaging Key Laboratory, Institute of Geophysics and Geomatics,
China University of Geosciences, 430074 Wuhan, Hubei, China
*MOE Key Laboratory of Fundamental Physical Quantities Measurement, Hubei Key Laboratory
of Gravitation and Quantum Physics, PGMF, and School of Physics,
Huazhong University of Science and Technology, 430074 Wuhan, Hubei, China

® (Received 26 September 2020; accepted 24 December 2020; published 12 January 2021)

It was pointed out that the black hole quasinormal modes resulting from a piecewise approximate
potential are drastically distinct from those pertaining to the original black hole metric. In particular, instead
of lining up parallel to the imaginary axis, the spectrum is found to stretch out along the real axis. In this
work, we prove that if there is a single discontinuity in the effective potential, no matter how insignificant it
is, the asymptotic behavior of the quasinormal modes will be appreciably modified. Besides showing
numerical evidence, we give analytical derivations to support the above assertion even when the
discontinuity is located significantly further away from the maximum of the potential and/or the size
of the step is arbitrarily small. Moreover, we discuss the astrophysical significance of the potential
implications in terms of the present findings.

DOI: 10.1103/PhysRevD.103.024019
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Resultant temporal evolutions measured by an observer located at r, = O for some initial Gaussian distribution centered at

r, = 3 with a width & = 1. The blue solid curves shown in the left and right plots correspond to the cases where the “cut” and “‘step”™
defined in Eqgs. (4) and (6) are located at r, ~ r = 10. While the initial oscillations for z < 15 are identical for the two cases, a late-time

tail for 7 = 150 is observed for the potential with the “step.” As a comparison, the results for the original Regge-Wheeler potential are
also represented by the orange dotted curves in the right plot.

QIAN, LIN, SHAO, WANG, and YUE

PHYS. REV. D 103, 024019 (2021)
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) Black hole structural instability

« No matter how weak it is, a discontinuity 2
potentially leads to drastic modifications to Z
higher overtones 2

« The low-lying modes seem less affected, and
therefore the time-domain waveform remains
mostly intact
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PHYSICAL REVIEW X 11, 031003 (2021)

Pseudospectrum and Black Hole Quasinormal Mode Instability

José Luis Jaramillo ,1 Rodrigo Panosso Macedo ,2 and Lamis Al Sheikh®'

"nstitut de Mathématiques de Bourgogne (IMB), UMR 5584, CNRS,
Université de Bourgogne Franche-Comté, F-21000 Dijon, France
*School of Mathematical Sciences, Queen Mary, University of London,
Mile End Road, London EI 4NS, United Kingdom

™ (Received 14 April 2020; accepted 3 May 2021; published 6 July 2021)

We study the stability of quasinormal modes (QNM) in asymptotically flat black hole spacetimes by
means of a pseudospectrum analysis. The construction of the Schwarzschild QNM pseudospectrum reveals
the following: (i) the stability of the slowest-decaying QNM under perturbations respecting the asymptotic
structure, reassessing the instability of the fundamental QNM discussed by Nollert [H. P. Nollert, About the
Significance of Quasinormal Modes of Black Holes, Phys. Rev. D 53, 4397 (1996)] as an “infrared” effect;
(i1) the instability of all overtones under small-scale (“‘ultraviolet™) perturbations of sufficiently high
frequency, which migrate towards universal QNM branches along pseudospectra boundaries, shedding
light on Nollert’s pioneer work and Nollert and Price’s analysis [H. P. Nollert and R. H. Price, Quantifying
Excitations of Quasinormal Mode Systems, J. Math. Phys. (N.Y.) 40, 980 (1999)]. Methodologically, a
compactified hyperboloidal approach to QNMs is adopted to cast QNMs in terms of the spectral problem of
a non-self-adjoint operator. In this setting, spectral (in)stability is naturally addressed through the
pscudospectrum notion that we construct numerically via Chebyshev spectral methods and foster in
gravitational physics. After illustrating the approach with the Poschl-Teller potential, we address the
Schwarzschild black hole case, where QNM (in)stabilities are physically relevant in the context of black
hole spectroscopy in gravitational-wave physics and, conceivably, as probes into fundamental high-
frequency spacetime fluctuations at the Planck scale.

DOI: 10.1103/PhysRevX.11.031003 Subject Areas: Astrophysics, Gravitation,
Interdisciplinary Physics, Optics
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FIG. 9. QNM spectral instability of Poschl-Teller potential. Com-
bination of Figs.[3][5]and[7} corresponding to three independent cal-
culations, respectively: condition numbers ratios kn /Ko (top panel),
pseudospectrum and perturbed QNM spectra (bottom panel). The
bottom pannel demonstrates the high-frequency nature of the spectral
instability, as well as the migration of Poschl-Teller QNMs towards
pseudospectrum contour lines under high-frequency perturbations.
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FIG. 11. Pseudospectra of Poschl-Teller under random perturba-
tions dV; of increasing norm, demonstrating the “regularizing” ef-
fect of random perturbations: pseudospectra sets o€ bounded by that
“contour line” reached by perturbed QNMs become “flat”, a signa-
ture of improved analytic behaviour of the resolvent, as illustrated in
Fig.[6] Pseudospectra sets not attained by the perturbation remain un-
changed. Regularization of Ry, 51, (w) increases as ||V, grows.
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) Black hole structural instability

« Structural instability is different from the stability ?
of individual states :

< No matter how weak the metric perturbation is,
it potentially leads to drastic modifications to
higher overtones

therefore the time-domain waveform remains

2
@
i
é
+» The low-lying modes seem less affected, and %
mostly intact }
3
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| Deformed high overtones furnish a
recipe for GW echoes

+» Bouncing back and forth between the maxima of
the effective potential

+» Analysis based on QNM spectrum
(arXiv:1711.00391)

+» Analysis based on Green’s function
(arXiv:1706.061595)

2
2
Z
!
|
«» Analysis based on the poles of the Green’s 2
function (arXiv:2104.11912) Z
-
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\Echoes and poles of Green's function
owing to discontinuity
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\Echoes and poles of Green's function
owing to discontinuity
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Regge-Wheeler potential

Destabilizing the Fundamental Mode of Black Holes: The Elephant and the Flea

“:'flhlé’t;ability in the fundamental mode of

Mark Ho-Yeuk Cheung,! Kyriakos Destounis,? Rodrigo Panosso Macedo,>#* Emanuele Berti,! and Vitor Cardoso® 3

! Department of Physics and Astronomy, Johns Hopkins University,
3400 North Charles Street, Baltimore, Maryland, 21218, USA
2 Theoretical Astrophysics, IAAT, University of Tiibingen, 72076 Tiibingen, Germany
SCENTRA, Departamento de Fisica, Instituto Superior Técnico—IST,
Universidade de Lisboa—UL, Avenida Rovisco Pais 1, 1049 Lisboa, Portugal
STAG Research Centre, University of Southampton,
University Road SO17 1BJ, Southampton, United Kingdom
5 Niels Bohr International Academy, Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen, Denmark
(Dated: March 29, 2022)

Recent work applying the notion of pseudospectrum to gravitational physics showed that the
quasinormal mode spectrum of black holes is unstable, with the possible exception of the longest-lived
(fundamental) mode. The fundamental mode dominates the expected signal in gravitational wave
astronomy, and there is no reason why it should have privileged status. We compute the quasinormal
mode spectrum of two model problems where the Schwarzschild potential is perturbed by a small
“bump?” consisting of either a Péschl-Teller potential or a Gaussian, and we show that the fundamental
mode is destabilized under generic perturbations. We present phase diagrams and study a simple
double-barrier toy problem to clarify the conditions under which the spectral instability occurs.
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) Black hole structural instability

« Structural instability is different from the stability 2
of individual states

+» No matter how weak the metric perturbation is,
it potentially leads to drastic modifications to
higher overtones and low-lying modes

Z
2
!
Z
%
+» The time-domain waveform remains mostly Z
intact™ z
-
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S Emergence of spectral instability
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Analytically accessible example (e.g. truncated PT &
Truncated PT

asymptotical properties of the hypergeometric function

extensively investigated by other authors (arXiv:1004.2539, 1007.4039, 2009.11627, 2406.10782)

analytic forms of the transmission matrix that provide a straightforward picture
employed by various authors (arXiv: 2210.01724, 2407.15191, 2407.20144, 2409.17026)

Demonstrate explicitly and dynamically how spectral instability emerges
as the perturbation (implemented by a discontinuity) moves away from
the black hole

To implement this, the matrix method is generalized to the hyperboloidal
coordinates on the grid
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» To implement this, the matrix method is generalized to the hyperboloidal

» Matrix method is an approach reminiscent to the continued fraction

«» Chebyshev grid is an optimal choice for polynomial expansion where

» Hyperboloidal coordinates is an alternative but natural choice of null

= AT

A dynamic picture of spectral
instability

coordinates on the Chebyshev grid

Yea

method where the expansion is carried out at different nodes on a grid

Runge instability is significant suppressed

infinity as the bound for QNM master equation instead of conventional
spatial infinity where the wave function becomes divergent

+---~
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) Emergence of spectral instability
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T
JA “contradiction” in the existing literature
about QNM in the perturbed PT potential

> Visser's perturbative results (arXiv:1004.2539, arXiv:1007.4039)

» Analytic calculations of asymptotic behavior (arXiv:2009.11627) in the
modified PT potential

+ Observation of in the QNM spectrum

+ Dynamic evolution of high overtones from parallel to the imaginary l
frequency axis to parallel to the real frequency axis l

R LY QTR TR LYy Ry R IR R N Ry Ry



35

30F
251
20+
15+

1a7]

o ['e] o wn o [fo} o
(3] o o~ — ~—

35

|l

-2

o
I

WR

WRr

L e e e e o T B e e T B e e e e
L]
.
.
.
® e, [
e®ae
I. g
[]
.
.
]
.
. ]
o o%eten,
L]
L . i
L]
]
I 1 1 1 L I
w (=] w o w0 o w o
© © o™ o~ - -
3
T T T T T
[ ]
L ., N
®e®0%etsv0cscsescsnsnse
. ]
.
.
.
.
.
.
(] i
a--.alnno.onolclololon
.
.
[
PR S TR S S S BRSNS E S S B SRR B S
wn (=] w o w0 o w o
(3] [sp) [aY] o~ — —

-2



35

30

25F

20

|

151

101

35

30+

25F

20

e

151

10F

Wg

Wr

35

30

251

20

[}

15

10

35

30+

25+

20+

[

15

10t

wr

Wr



J
~d
Instability in the fundamental mode of
Regge-Wheeler potential

» Disjoint effective potentials have been utilized as a toy model to
illustrate such an instability (arxiv: 2210.01724, 2407.15191, 2407.20144, 2409.17026)

» Is it reasonable as an approximation?
» Is it physically plausible?

» Does it always imply instability?

« Observational implications?

l
)
l
!
l
l
l
l
-
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Instability in the fundamental mode of
Regge-Wheeler potential

» An analytic derivation can be given from a rather general context

+ The fundamental mode of truncated PT potential was found to be
in contrast with most studies in the literature

» Disjoint effective potential is always unstable, independent of specific
potential form

+ Analytic results are in good agreement with numerical calculations l
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nETé'BiIity in the fundamental mode of
Regge-Wheeler potential
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! Greybody factor as stable
observables

+ Rosato et al. (arXiv: 2406.01692) and Oshita et al. (arXiv:2406.04525)
pointed out that graybody factors are stable observables at relatively
high frequencies

l
l
!
l
l
l
l
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S Greybody factor as stable

observables
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» Rosato et al. (arXiv: 2406.01692) and Oshita et al. (arXiv:2406.04525)

« When viewed as a scattering problem, the graybody factor can be

TG ATy

Greybody factor as stable
observables

pointed out that graybody factors are stable observables at relatively
high frequencies

viewed to receive contributions from different partial waves while sitting
on top of the background eikonal limit

+----
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! Greybody factor as stable
observables
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Greybody factor as stable
observables

» Rosato et al. (arXiv: 2406.01692) and Oshita et al. (arXiv:2406.04525)

pointed out that graybody factors are stable observables at relatively
high frequencies

« When viewed as a scattering problem, the graybody factor can be

viewed to receive contributions from different partial waves while sitting
on top of the background eikonal limit

« The greybody factor is essentially the squared module of transmission

amplitude, therefore, it seems that the stability of the greybody factor

Z
)
Z
!
2
resides in that of Regge poles z
2
2
-
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Greybody factor as stable
observables
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+ When viewed as a scattering problem, the graybody factor can be

+ The greybody factor is essentially the squared module of transmission

= AT

Greybody factor as stable
observables

« Rosato et al. (arXiv: 2406.01692) and Oshita et al. (arXiv:2406.04525)
ﬁ_omted out that graybody factors are stable observables at relatively
igh frequencies

viewed to receive contributions from different partial waves while sitting
on top of the background eikonal limit

amplitude, therefore, it seems that the stability of the greybody factor
resides in that of Regge poles

+ However, Re%gl_e poles are not really “stable” and shown to subject to
spectral instability
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| Scattering amplitude constituted by
the underlying Regge poles

PHYSICAL REVIEW LETTERS 131, 111401 (2023)

From Black Hole Spectral Instability to Stable Observables

Théo Torres
Aix Marseille Université, CNRS, Centrale Marseille, IMA UMR 7031, Marseille, France

® (Received 4 May 2023; revised 16 June 2023; accepted 8 August 2023; published 11 September 2023)

The quasinormal mode spectrum of black holes is unstable under small perturbation of the potential and
has observational consequences in time signals. Such signals might be experimentally difficult to observe
and probing this instability will be a technical challenge. Here, we investigate the spectral instability of
time-independent data. This leads us to study the Regge poles (RPs), the counterparts to the quasinormal
modes in the complex angular momentum plane. We present evidence that the RP spectrum is unstable but
that not all overtones are affected equally by this instability. In addition, we reveal that behind this spectral
instability lies an underlying structure. The RP spectrum is perturbed in such a way that one can still
recover stable scattering quantities using the complex angular momentum approach. Overall, the study
proposes a novel and complementary approach on the black hole spectral instability phenomena that allows
us to reveal a surprising and unexpected mechanism at play that protects scattering quantities from the
instability.
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» 10 answer this, the matrix method is generalized to evaluate Regge

» We evaluate Regge poles, transmission coefficients, and the scattering

TG ATy

A dynamic picture of spectral
instability

poles in the hyperboloidal coordinates on the Chebyshev grid

amplitude, graybody factors, and explore their dependence on
frequency and other parameters.
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PHYSICAL REVIEW D 83, 127502 (2011)
A geometric framework for black hole perturbations

Anil Zenginoglu
Theoretical Astrophysics, California Institute of Technology, Pasadena, California, USA
(Received 15 February 2011; published 17 June 2011)

Black hole perturbation theory is typically studied on time surfaces that extend between the bifurcation
sphere and spatial infinity. From a physical point of view, however, it may be favorable to employ time
surfaces that extend between the future event horizon and future null infinity. This framework resolves
problems regarding the representation of quasinormal mode eigenfunctions and the construction of
short-ranged potentials for the perturbation equations in frequency domain.

DOI: 10.1103/PhysRevD.83.127502 PACS numbers: 04.25.Nx, 04.70.Bw, 04.20.Ha
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w X 1/5 1/3 1/2 2/3 4/5 w X 1/5 1/3 1/2 2/3 4/5

IMM 0.1 Re(dg) 1.774253 1.693898 1.617204 1.557917 1.528656 :IMM 0.1 Re(dp) 1.360288 1.268653 1.174931 1.146382 1.301967

Im(dp) 0.285414 0.182655 0.132764 0.110739 0.102096 Im(dp) 0.094145 0.116269 0.176222 0.307970 0.521280
Re(d;) 0451043 0.380904 0.370980 0.440004 0.575100 Re(1;) 0.697955 0.766626 0.903650 1.141025 1.542527
Im(A;) 3.598320 2.390483 1.503480 0.874645 0.526054 Im(4;) 0764168 0961770 1.202828 1.487517 1.830079
2.0 Re(1p) 6.716861 5.671341 5256377 5477237 5.788201 2.0 Re(Ap) 5.340572 5.660748 6.582699 B.656515 12.905628
Im(dp) 1.858302 1.204032 0.661783 0.323130 0.594422 Im(dp) 0.664842 0.972551 1.344722 1.800766 2.388594
Re(d;) 6.928930 5.618690 4.990127 5.071166 5.334647 Re(d;) 5.359182 5.908920 7.120976 9.518427 14.122522
Im(A;) 4.735250 3.198286 2.044238 1.064024 0.595809 Im(A1) 1924792 2415844 3.041853 3.850981 4.904038

CFM 0.1 Re(dp) 1.774253 1.693899 1.617216 1.558007 1.528872 CFM 0.1 Re(dy) 1.360256 1.2686606 1.174929 1.146381 1.301967

Im(1p) 0.285414 0.182655 0.132764 0.110729 0.102096 Im(dg) 0.094148 0.116276i 0.176223 0.307971 0.521280
Re(1;) 0.451043 0.380904 0.370986 0.440233 0.575376 Re(1)) 0.698675 0.766448 0.903694 1.141281 1.542476
Im(1;) 3.598320 2.390481 1.503475 0.875028 0.528817 Im(1;) 0.763163 0.961685 1.202493 1487527 1.830102

2.0 Re(dg) 6.716861 5.671342 5256464 5476614 5.786688 2.0 Re(dg) 5340564 5.660748 6.582699 8.656515 12.905628
Im(dp) 1.858301 1.204025 0.661678 0.324511 0.593437 Im(do) 0.664837 0.972551 1.344722 1.800766 2.388594
Re(1;) 6.928930 5.618684 4.990179 5.071176 5.334340 Re(1;) 5.359185 5.908902 7.120967 9.518454 14.122522

Im(1;) 4.735252 3.198287 2.044712 1.066662 .596942 Im(1;) 1.924777 2.415850 3.041877 3.850958 4.904039
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{ A dynamic picture of spectral
instability

+ At lower frequencies, the spectral instability is not a severe issue

+ At higher frequencies, where the eikonal limit is largely valid, Regge
poles are not supposed to be important
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) Concluding remarks

+» QNMs and their stability, as generic properties of Z?
any dissipative system, play a pivotal role in the 3
ongoing effort of GW astronomy %

+» The recent developments on spectral mstablllty of 22
QMNs and Regge poles, place this concept in 2,

—

—_—"

extensive discussion in the context of black hole
spectroscopy :

+ Its observational implication, o, IS not yet settledp
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Speculations

+» Do time-domain stability or observables such as
the greybody factor guarantee the success in
extracting the underlying metric parameters?

+» A complete analysis from simulated GW signals,
that includes simulated data with realistic noise
and are accompanied by TDI scheme using
Bayesian/ML algorithms is warranted

+ Reflectionless modes(?)
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