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Nonlinear wave equation (NLW)

□Φ := −∂2
t Φ+∆Φ = µ|Φ|p−1Φ, Φ : R× Rn → R, p > 1,

µ = −1 focusing, µ = 1 defocusing
Model for nonlinear wavelike equations in fluid dynamics, optics,
acoustics, plasma physics, GR, QFT, . . .
Related equations: nonlinear Schrödinger, Korteweg–de Vries,
Klein–Gordon, Yang–Mills, wave map, . . .
Rich behaviour of solutions due to interplay between dispersion
and nonlinearity
In general, small initial data will scatter, large initial data will cause
blow-up (in the focusing case at least)
In some cases stable regular soliton solutions exist, which may
prevent solutions from scattering
Much recent interest in analysing global well posedness
[Bourgain 1999, Kenig & Merle 2008, Dodson 2016, . . .]
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Energy criticality

NLW is invariant under the rescaling

Φ(t , x) → λ
2

p−1Φ(λt , λx)

Conserved energy (∂tE = 0)

E(Φ, ∂tΦ) =

∫
Rn

(
1
2(∂tΦ)

2 + 1
2∥∇Φ∥2 + µ

p+1 |Φ|p+1
)

dx

Energy is invariant under the rescaling iff the NLW is
(energy-)critical,

p =
n + 2
n − 2

=: pcrit

p < pcrit subcritical, p > pcrit supercritical
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Unbounded domains: truncation

How do we deal numerically with the infinite spatial domain?

Simplest approach: truncate, radius r ⩽ R with R suitably large
Boundary conditions at r = R are needed in order to obtain a
well-posed initial-boundary value problem.
Exact absorbing (a.k.a. transparent, non-reflecting, radiative)
boundary conditions are not known in the nonlinear case.
Naive boundary conditions (e.g. Dirichlet) will generally cause
spurious reflections.
Moreover, we cannot determine the solution for r > R.
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Spatial compactification

Compactify radius, e.g.

r =
2ar̃

1 − r̃2 , r̃ ∈ (0,1), a = const (=6 in plots below)

Characteristics of the NLW:

t ± r = const,

+ ingoing (red),
− outgoing (blue)
In (t , r̃) coordinates, outgoing
characteristics pile up near
r̃ = 1.
Waves ultimately fail to be
resolved numerically as they
travel outwards. 0.0 0.2 0.4 0.6 0.8 1.0
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Hyperboloidal compactification

Introduce a new time coordinate

t̃ = t −
√

a2 + r2

Outgoing characteristics
smoothly leave the domain.
No incoming characteristics
⇒ no boundary conditions
needed at future null infinity
I + (r̃ = 1).
Radiation can be read off
there.
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Hyperboloidal slices
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A few hyperboloidal slices in the (r , t) plane (evenly spaced in t̃)
and a numerical grid that is uniform in r̃
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Polar coordinates, symmetry assumptions

We use spherical polar coordinates

r ∈ (0,∞), θ1, . . . , θn−2 ∈ [0, π], φ ∈ [0,2π)

Most previous numerical work has assumed radial symmetry
[Strauss & Vazquez 1978, . . .].
Exceptions: [Zenginoğlu & Kidder 2010/11] evolve cubic (p = 3)
NLW in n = 3 without symmetries.
Here we do not assume any symmetries for n = 3.
For n > 3 we impose SO(n − 1) symmetry so there is one
effective angular coordinate θ on the sphere.
Let σ(n−1) denote the standard metric on the sphere Sn−1

and ∆̊(n−1) its Laplace–Beltrami operator.
Under SO(n − 1) symmetry,

∆̊(n−1) = ∂2
θ + (n − 2) cot θ ∂θ
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Hyperboloidal foliation of Minkowski spacetime

(n + 1)-dimensional Minkowski metric

η = −dt2 + dr2 + r2σ(n−1)

Introduce a new time coordinate

t̃ = t −
√

a2 + r2, a =
n
C

> 0

Hypersurfaces t̃ = const are hyperboloids, C is their constant
mean curvature (taken to be C = 0.5 in the numerical evolutions).
Also introduce a compactified radius r̃ :

r =
2nr̃

C(1 − r̃2)
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Conformal metric

Minkowski metric in the new coordinates takes the form

η = Ω−2
[
−α̃2dt̃2 + (dr̃ + β̃ r̃ dt̃)2 + r̃2σ(n−1)

]
=: Ω−2η̃

Conformal factor Ω =
r̃
r
=

C
2n

(1 − r̃2), conformal metric η̃

Conformal lapse α̃ =
C
2n

(1 + r̃2) and shift β̃ r̃ = − r̃
a
= −C

n
r̃

r̃ has been chosen such that the spatial conformal metric is flat,

γ̃ = dr̃2 + r̃2σ(n−1)

Scalar curvature (Ricci scalar) of η is R = 0 (flat)
but for the conformal metric η̃,

R̃ =
4n[−r̃4 + (n − 5)r̃2 + n]

(r̃2 + 1)3
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Nonlinear wave equation

Start with NLW
□Φ = µ|Φ|p−1Φ

Define a conformally rescaled scalar field

Φ̃ = Ω(1−n)/2Φ

Using the conformal identity

□̃Φ̃− n − 1
4n

R̃Φ̃ = Ω−(n+3)/2
(
□Φ− n − 1

4n
RΦ

)
and R = 0, we obtain

□̃Φ̃− n − 1
4n

R̃Φ̃ = µΩ[p(n−1)−n−3]/2|Φ̃|p−1Φ̃
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Conformal 3+1 decomposition

ν̃ := unit future-directed normal to t̃ = const slices
Lie derivative Lν̃Φ̃ = α̃−1(∂t̃ − β̃ r̃∂r̃ )Φ̃

Conformal mean curvature of t̃ = const slices: K̃ = − 2n
r̃2 + 1

With these definitions the NLW reads

−L2
ν̃Φ̃+∆̃Φ̃+K̃Lν̃Φ̃+α̃−1∇̃α̃·∇̃Φ̃−n−1

4n R̃Φ̃ = µΩ[p(n−1)−n−3]/2|Φ̃|p−1Φ̃

Write in first-order form in time by introducing Π̃ := Lν̃Φ̃:

Φ̃,̃t = β̃ r̃ Φ̃,r̃ + α̃Π̃,

Π̃,̃t = r̃1−n
[
r̃n−1

(
β̃ r̃ Π̃ + α̃Φ̃,r̃

)]
,r̃
+ α̃r̃−2∆̊(n−2)Φ̃− n − 1

4n
α̃R̃Φ̃

−µα̃Ω[p(n−1)−n−3]/2|Φ̃|p−1Φ̃

Regular at I + (r̃ = 1) provided that

p ⩾ pconf :=
n + 3
n − 1

> pcrit for n ⩾ 3
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Energy balance

Scalar field Φ is associated with energy-momentum tensor

Tab = ∇aΦ∇bΦ− 1
2ηab∇cΦ∇cΦ− µ

p+1 |Φ|p+1ηab,

where ∇ is covariant derivative of Minkowski metric η

Conservation of energy and momentum: ∇bTab = 0
Killing vector (symmetry) k = ∂t gives rise to conserved current

Ea = T a
bkb = T a

t , ∇aEa = 0

Applying Gauss’ law yields energy balance of the form

E (̃t2)− E (̃t1) = F (̃t1, t̃2),

where E (̃t) is energy on hyperboloidal slice of constant time t̃
and F (̃t1, t̃2) is integrated energy flux at I + between t̃1 and t̃2
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Energy balance

Here the energy is

E (̃t) =
C
4n

∫ 1

0
r̃n−1dr̃

∫
Sn−1

dS(n−1)
{
(1 + r̃2)

[
Π̃2 + Φ̃2

,r̃

+
1
r̃2 ∥∇̊

(n−1)Φ̃∥2 + 2µΩ[p(n−1)−n−3]/2 1
p + 1

|Φ̃|p+1
]

+2(n − 1)
r̃2 − 1
r̃2 + 1

r̃ Φ̃,r̃ Φ̃− 4r Φ̃,r̃ Π̃ + (n − 1)2 r̃2

r̃2 + 1
Φ̃2

}
(highlighting the potential energy contribution)
The flux is manifestly negative, showing that waves carry away
energy at infinity:

F (̃t1, t̃2) = −C2

n2

∫ t̃2

t̃1
dt̃

∫
S(n−1)

dS(n−1)(Φ̃,r̃ − Π̃)2
∣∣∣
r̃=1
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Spatial discretisation: radial finite differences

Introduce equidistant grid points, staggered about axis and origin

r̃i = (i + 1
2)hr̃ , i = 0,1, . . . ,Nr̃ − 1, hr̃ = 1/(Nr̃ − 1

2),

θj = (j + 1
2)hθ, j = 0,1, . . . ,Nθ − 1, hθ = π/Nθ,

φk = khφ, k = 0,1, . . . ,Nφ − 1, hφ = 2π/Nφ

Discretise radial derivatives using centred fourth-order finite
differences.
One-sided finite differences near outer boundary r̃ = 1
Near the origin, fill values at ghost points r̃−1 and r̃−2 using

u(−r̃ , θ, φ) = u(r̃ , π − θ, π + φ)
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Spatial discretisation: pseudospectral method

Any smooth function on the sphere must obey

u(−θ, φ) = u(θ, π + φ), u(π + θ, φ) = u(π − θ, π + φ)

Fourier expansion, here in n = 3 without symmetries:

u(θ, φ) ≈
Nθ−1∑
l=0

cos(lθ)
Nφ/2−1∑

m=0
m even

alm eimφ + sin(lθ)
Nφ/2−1∑

m=1
m odd

alm eimφ


Transform between expansion coefficients alm and grid point
values ujk := u(θj , φk ) using fast Fourier transform techniques

Main object in the code is array of values of Φ̃ and Π̃ at grid points
(r̃i , θj , φk ).
Nonlinear terms are evaluated pointwise.
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Time stepping and filtering

Method of lines: First discretise in space → system of ODEs
Integrate forward in time using fourth-order Runge-Kutta method
Add fifth-order dissipation [Kreiss-Oliger 1973] in radial direction to
obtain stable finite-difference method (higher order than numerical
truncation error)
To avoid spectral aliasing, apply spectral filtering (2/3 rule)
To alleviate clustering of grid points near the poles of the
two-sphere, filter out proportion 1 − sin θ of all φ-Fourier modes
Time step is restricted by smallest distance between neighbouring
grid points:

∆t̃ = λ∆xmin, ∆xmin = 1
2hr̃ hθ

with 0 < λ < 1 [Courant–Friedrichs–Lewy], typically λ = 0.8
Typical numerical resolution is Nr̃ = 4000, Nθ = Nφ = 12
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Spatial integration

Radial integration is performed using Simpson’s rule (same order
of numerical truncation error as finite-difference scheme, O(h4

r̃ )).
Fourier spectral expansion can be integrated directly:

∫
S2

u dS(2) =

∫ 2π

0

∫ π

0
u(θ, φ) sin θ dθ dφ ≈ 2π

Nθ−1∑
l=0

l even

2al0

1 − l2

Generalisation to higher dimensions is straightforward.
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Convergence test against exact linear solutions

We have constructed exact solutions to the linear wave equation
in various dimensions, based on expansion in spherical harmonics
Ylm(θ, φ).
Plot L2 norm of error of numerical vs. exact solution
Here n = 3, initial data containing two spherical harmonics
(l ,m) = (1,1) and (2,−2)

0 5 10 15 20
t̃

10−7

10−6

10−5

10−4

10−3

‖Φ̃
−
Φ̃
ex
ac
t‖

n = 3

Nr̃ = 250, 500, 1000
Approximate fourth-order
convergence
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Nonlinear evolution

n = 5 under SO(4) symmetry, focusing, cubic nonlinearity (p = 3)
Momentarily static initial data containing two spherical harmonics
with l = 1 and l = 2
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Energy balance: numerical conservation

Numerically evaluated energy E (̃t), integrated flux −F (0, t̃)
and their sum. Focusing (solid) vs. defocusing (dashed) NLW.
Energy balance is well satisfied numerically:

E (̃t)− F (0, t̃) = E(0) = const
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n = 5, p = 3
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Energy balance: convergence

Relative error in violation of energy balance (n = 5, p = 3, defocusing).

left: varying radial resolution (Nr̃ = 1000,2000,4000) at fixed Nθ = 24,
right: varying angular resolution (Nθ = 16,20,24) at fixed Nr̃ = 4000.
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Potential energy contribution

Ratio of potential energy and total energy,
focusing (solid) vs. defocusing (dashed)
Potential energy becomes negligible at late times.
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Tails

Extract the scalar field at a fixed radius r̃ex and expand into
(real basis of) spherical harmonics

Φ̃|r̃=r̃ex =
∞∑

l=0

l∑
m=−l

Φ̃lm (̃t) Ŷlm(θ, φ)

Each mode Φ̃lm shows a power-law decay ∼ t̃−qlm at late times,
the so-called tail.
Compute the local power index

qlm (̃t) := −d ln Φ̃lm

d ln t̃

∣∣∣
r̃=r̃ex

This will approach a constant decay rate qlm as t̃ → ∞.
Observe that the decay rate is the same for focusing and
defocusing NLW with the same exponent p of the nonlinearity.
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Tails: azimuthal independence

Evolution for n = 3, p = 5 below has initial data containing two
spherical harmonics with (l ,m) = (2,1) and (2,2).
Find that qlm is independent of m, hence focus on SO(n − 1)
symmetry in the following.
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Tails: convergence (here n = 3,p = 5)
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Tails: radial dependence

Local power index q2(t) extracted at four different radii:
r̃ex = 0.5, 0.9, 0.99 and 1
Same asymptotic decay rate at any finite radius but a slower
decay rate at I + (r̃ = 1)
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Tails: dependence on spherical harmonics

Compare local power index q2 at a finite radius and at I + for
l = 0, 1, 2, 3
Here again n = 3, p = 5
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Tails: dependence on l and p

For each (n,p, l) the numerically determined decay rate ql is shown
at finite radius | at I +

n = 3 p = 3 p = 4 p = 5 p = 6 p = 7
l = 0 2|1 3|2 4|3 5|4 6|5
l = 1 4|2 4|2 5|3 6|4 7|5
l = 2 6|3 6|3 6|3 7|4 8|5
l = 3 8|4 8|4 8|4 8?|4 9?|5?

n = 5 p = 2 p = 3
l = 0 4|2 5?|3?
l = 1 6|3 6|3?
l = 2 8|4 8|4
l = 3 10|5 10?|5
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Tails: dependence on l and p

Conjecture
For the NLW in n = 3 spatial dimensions with p ⩾ 3, the spherical
harmonic modes in standard coordinates t , r decay as t → ∞ as

Φlm(t , r) ∼ t−ql , ql = max(l + p − 1, 2l + 2).

at any fixed finite radius r .

At I + , the modes of the conformally rescaled scalar field Φ̃ decay in
hyperboloidal time t̃ asymptotically as

Φ̃lm (̃t) ∼ t̃−q̃l , q̃l = max(p − 2, l + 1).

Consistent with perturbative analysis [Szpak, Bizoń & Chmaj 2009]
for l = 0 (radial symmetry) at finite radius (Φ ∼ t−p+1).
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Conclusion

Studied focusing and defocusing, sub- and supercritical NLW in
n ⩾ 3 spatial dimensions.
No symmetries for n = 3, SO(n − 1) symmetry for n > 3.
Foliation of Minkowski spacetime into hyperboloidal slices of
constant mean curvature, conformal compactification.
Derived energy balance on hyperboloidal slices with manifestly
negative flux.
Numerical approach combines radial finite-difference with angular
pseudospectral method.
Demonstrated fourth-order convergence against exact linear
solutions and self-convergence of nonlinear evolutions
(energy balance, local power indices).
Numerically determined late-time power-law decay rates (tails) for
n = 3,5 and various values of the nonlinearity exponent p and the
spherical harmonic index l .
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Outlook

It would be interesting to try and prove the conjecture on the tail
decay rates for l > 0 in n = 3 dimensions.
A similar conjecture for higher dimensions would need more data.
Problem: field decays very rapidly for higher exponents p.
Higher than the longdouble precision used here
(80 bits, eps ≈ 10−19) would be needed.

Further applications of hyperboloidal code include study of
singularity formation (blow-up) and threshold between blow-up
and scattering.
In radial symmetry this was studied numerically for the focusing
cubic (p = 3) NLW in n = 3 [Bizoń & Zenginoğlu 2009] and in
n = 5,7 [Glogić, Maliborski & Schörkhuber 2020].
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