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Introduction

Consider a spacetime (L,v) and a time function t : R D (a, b) — R.

o Level sets of t given by M; with induced metric g and extrinsic

curvature K produce a local foliation of (L, ).

o The constraints operator is defined by:

K)? —|K]? $
o = R P =B _ (00
2divg(K — trgk - g) by
where ® : M x S3(T*M) — C°(M) x [(T*M), with M the bundle
of metrics, and S*(T*M) the bundle of symmetric (0, 2)-tensors on M.
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o The Einstein Constraint Equations require that:

o (0gK) = (p.)).

o The vacuum Einstein Evolution Equations are given by:

L, (f)g: 2(0/{7

(Ow2N

£,0K — =9 ((f)/( o (t)K) — (ORjc — ((t) tr(OK )(f)K

)

where v = 1 (9; — X), with N € C>(M) and X € T(TM).
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Hyperboloids in Minkowski

We denote by (H?, b, b) the hyperboloid of radius 1 embedded in
Minkowski as a totally umbilic spacelike hypersurface

= {(t,x) e R>" | * = * + 1},
1

b:
14+ r2

dr* 4 r*opdu®du®,
where o is the standard round metric on the unit sphere. On the

hyperboloid, we use coordinates x = (r, t/), where v/ € S? denote the
standard polar coordinates on the sphere.
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Benoit Michel Charges on Asymptotically Hyper-

boloidal Initial Data Sets

Consider an Initial Data Set (M, g, K) and a diffeomorphism at infinity W
providing coordinates in which the above is asymptotic to the standard

hyperboloid in Minkowski. We denote the errors as follows,

g=V*g—b, and K := UV*K — b.

o We use the constraint operator ® as the charge density.

o Note that ¢, = (0,0).
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The linearization of ® at (H3, b, b) is given by

Dby (; ) divpdiveg + Aptrpg — 2trpg + 4tryK
b8 dtrpg — b’ng,j — 2(divpg — dtrpg) + 2div,K — dtrpK

Taylor expanding ¢ and contracting with a test function V € I'(R @ T*H)
leads to

((g. K) — Pb, V)b = (Dy(g, K), V)5 + Q(V, (&, K)).-

Now, integrating by parts:

(®(g, K), V) = divsU(V, (g, K)) + (D* sV, (&, K))s + Q(V, (&, K)).
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With the above, we have a geometric invariant on (M, g, K) for each
non-trivial test function V for which D*®,V = 0, given by the following,

m(g, K,V) = lim % U, (g, K))(v)ds
oo S

where Sy = 0By is smooth and compact, (By)ken is a non-decreasing
exhaustion of the background manifold, and v and dS are the outer unit

normal and surface measure on S with respect to b.
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o We obtained geometric invariants from elements V of ker(D*®).

4Maerten, D.: Killing initial data revisited (2004)

Moncrief V.: Spacetime symmetries and linearization stability of the einstein equations (1974)
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o We obtained geometric invariants from elements V of ker(D*®).

o These are the Killing Initial Data (KIDs) of (H?, b, b) *°

o The KID corresponding to time translation 1, and the KIDs
corresponding to the spatial translation V; lead to the conserved
quantities of energy and linear momenta respectively.

4Maerten, D.: Killing initial data revisited (2004)

Moncrief V.: Spacetime symmetries and linearization stability of the einstein equations (1974)
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Writing U(V, (g, K)) explicitly for a KID V = (V, Y) = (V, a#), we have

m(g K, V) = lim —— ¢ [V(divsg — dtreg) — covis + (trsd)dV

r—o0 167
+ 2(taK — (troK)a)) + (treg)ta K
+ <KH3,g>bO¢ — ZLQ(g o KHS)} (n) dAgg.
We note that
atang

|(Q)tan5§;|77

r@t‘w +V1+r 8” -
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We obtain the definition of energy of an asymptotically hyperboloidal
initial data set:

E= ' lim / V2 (divs g — d trsg) — Vire(gas) + 2Vire (Kap) dAsz,
§

16T r—oo

forVy={V=v1+r, Y= _rmaﬁa“g}y
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We obtain the definition of energy of an asymptotically hyperboloidal

initial data set:

E= ' lim / V2 (divs g — d trsg) — Vire(gas) + 2Vire (Kap) dAsz,
§

16T r—oo

forVy={V=v1+r, Y= _rmaﬁa“g}y

Linear Momentum

P = L lim / (V2 (divbg — dtrbg) — Vtrg(gag) + 2Vtr0'(kaﬁ)) XidAS%,
87

167 r—oo

for
Vi={Vi=—rsinfcosp, Y;=—grad,Vi},

V, ={Vo = —rsinfsing, Y, = —grad,V,},
V3 ={V3 = —rcos#, Y; = —grad, Vs }.
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Asymptotically Hyperboloidal IDS

An initial data set (M, g, K, p, J) is asymptotically hyperboloidal if there exist compact sets
B C Mand By C H? and a diffeomorphism at infinity

V:M\ B— H\ B,
such that the (0, 2)-symmetric tensors on H* \ By
g:=Vg—b, p:=VK-—V'g

have the following asymptotic behavior as r — oc:

a m _ —
&r = rs” 7)7 Prr = % + % + 01(r 7)7
8ra = grr3a + 02( ), Pra = Proz + O](I’_4)
gmaﬂ gmaﬂ fmag

+ Oy(r~ ), Pag :Opaﬁ-i-

k~
5 m
fop = "gap + — + + 32+ o).
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® m,, p,, M, and p,, are functions on S? that do not depend on r.
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m,, p, M, and p,, are functions on S? that do not depend on r.
g« and p,, are one-forms that do not depend on r.

805, "Pass EMag, kmy s, 8, and K, 5 are symmetric

(0, 2)-tensors on S? which do not depend on r.

we assume that °g.z, “pas, éMaps and K, g are traceless with
respect to o.

the indices on these tensors are raised and lowered with respect to
Tap-

All terms in the expansion of g are in C2(S?) and those in the

expansion of p are in C'(S?).
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Comparison to other definitions of asymptotically hyperboloidal initial

data sets:

1. Chen, Wang and Yau °: no traceless assumption on &,z and 5.

2. Wang ": used in the proof of the positive mass theorem with the Jang
equation, does not incorporate radiation.

6 Conserved quantities on asymptotically hyperbolic initial data sets (2014)
The Mass of Asymptotically Hyperbolic Manifolds (2001)
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The energy and linear momentum of an asymptotically hyperboloidal
initial data set (M, g, K) are given as follows:

Energy of an AH IDS

1
=— | 2m,, + 3tr,€m + 2tr, “m dAs.
16w S?

Linear Momentum of an AH IDS

1 .
[P = 67 Joo (2m,, + 3trfm + 2trf m) x dAg:,

where x', i = 1,2, 3 denote the first spherical harmonics on the unit
sphere S2.
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Choice of Evolution

o The vector field v chosen for evolution is everywhere timelike -
definition of a local time function

8 Zenginoglu, A Bridging time across null horizons (2025)
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Choice of Evolution

o The vector field v chosen for evolution is everywhere timelike -
definition of a local time function

o We need a time function providing a suitable foliation by
hyperboloids at infinity.

o Other foliations: foliations by asymptotically Euclidean slices or

Milne foliations do not lead to a measurement of radiation®.

8 Zenginoglu, A Bridging time across null horizons (2025)
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Figure 1: Milne foliation

Figure 2: foliations by

t = constant slices (AE)
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Consider the Minkowski spacetime (R*',7), and a time function
T:=1t— h(r),

where the height function h(r) needs to be chosen appropriately to ensure

that V7 is timelike near infinity.

The (3 + 1) decomposition of Minkowski with respect to 7 is:

ds> = —d7? — 2K (r)drdr + (1 — (K (r))?)dr* + r’do”.
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For the choice

1
h/(r) =1- ? + Oz(r_3),

we obtain that the {7 = const} hypersurfaces are hyperboloids of radius 1.
The standard hyperboloidal initial data (H?, b, b) is obtained with the
choice

h(r) =V1+ 1,

and the lapse and shift on this initial data corresponding to the standard

Killing time in Minkowski are

N=+vV1+r%, X = —rv1+r2

It is easy to check that:

»Ca.,.b = ENV+X =0.
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Figure 3: Hyperboloidal foliation °

9 Zenginoglu, A: How to draw Penrose diagrams
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Evolution of Energy and Linear Momentum

Let (M, g, K, p, J) be an asymptotically hyperboloidal initial data set
with respect to a diffeomorphism W : H? \ B, — M\ B, where B C
M, By C HE are compact sets, and assume that supp(p), supp(J) C
B.
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Evolution of Energy and Linear Momentum

Let (M, g, K, p, J) be an asymptotically hyperboloidal initial data set
with respect to a diffeomorphism W : H? \ B, — M\ B, where B C
M, By C HE are compact sets, and assume that supp(p), supp(J) C
B. Let 7 be the standard time function defining a foliation of stan-
dard hyperboloids in Minkowski, and let N and X be the correspond-
ing lapse and shift. We denote the foliation of the globally hyper-
bolic development of (M, g, K) = {7 = 0}, by

(M {7}, (1), K(7)),

with 7 € (—¢,¢), for some € > 0. Then, the energy E(7) is well-
defined on each leaf of the foliation (M x {7}, g(7), K(7)) and sat-
isfies 5 :

ZE(r) = —— [ |°g+°p|’ dAs:.
or (7) 47 /Sz| 8+ p|" S
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Sketch of Proof: The Einstein evolution equations in vacuum are given by

0

and
0 :
a—K = HessN — NRic + 2N(K o K) — NHK + LxK.
=
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Sketch of Proof: The Einstein evolution equations in vacuum are given by

0

and
0
K = HessN — NRic + 2N(K o K) — NHK + LxK.

or

Using the above, we get:

0 1
—E(r)=—1i
or (7) 167 raco /83

— V2dtrp(2NK + Lx8)(9;) — Vtrs(2NKag + Lx8as)
+ 2Vtrb(Hessa5N — NRicag + 2N(K 0 K)ap — NHKag)

VAdivy(2NK + Lxg)(0,)

dAgz.

+ 2V, (ﬁXKaﬁ>
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Note that the asymptotics considered earlier are not preserved upon

evolution, e.g.,

: g -
Lxgap =Emap + 2%[3 +0:(r?),

and -
ml’T mrr

£)(grr = + 2
r

+0,()

r
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Note that the asymptotics considered earlier are not preserved upon

evolution, e.g.,

: g -
Lxgap =Emap + 2%[3 +0:(r?),

and
. rnrr n1ﬂ
£)(grr - + 2 + O ( )
After several cancellations, we obtam
0 1 . 4, 012
EE(T) = er rl_|)r20 /S2 (— ﬁ| g+pls+ —dlv(,p,a + dlvgg,a dAs:

1 . 4 . 4 - .
+ o rl_l)n(:o/ (—ztrggm + ﬁtrg (gm + km) ) dAs:.
S7

r

Using our hypothesis, we obtain the result.
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Linear Momentum: The statement and proof for the evolution of the
linear momentum is entirely analogous, except for the additional condition

that the following one forms are o-divergences of symmetric tracefree

two-tensors 8T, 5 and T, 5:

8ra = dngg111ﬁ7 Pra = divak111ﬁ7
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Linear Momentum: The statement and proof for the evolution of the
linear momentum is entirely analogous, except for the additional condition

that the following one forms are o-divergences of symmetric tracefree

two-tensors 8T, 5 and T, 5:

8ra = dngg111ﬁ7 Pra = divak111ﬁ7

leading to
EP"(T) — _i/ ’0g+0p|2 X' dAg:
or 4 Js o '
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E-P Chargeability

The asymptotic structure of an asymptotically hyperboloidal initial data

set is not preserved under the Einstein evolution equations.
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E-P Chargeability

The asymptotic structure of an asymptotically hyperboloidal initial data
set is not preserved under the Einstein evolution equations.

Consider the asymptotics of the 7 = 1 leaf of the foliation, that we denote
by (M, g, K) obtained from evolution of the 7 = 0 AH IDS (M, g, K, p, J):

- i)
8w = &+ P

B 1

Bop = 8ap + 2r (*8ap + "Pas) + Gap + ?b‘*ﬁ’
_ 2
Kap = Kap — f(u™)oap — ;|Og +°plioas,

where f € C3(S?), while an3 € C*(S?), and bz € C'(S?), with bag
tracefree.
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The energy of the evolved initial data (M, s, I_<) is then given by

1
E(r=1)=— lim / (Zmrr + 3tryfm + 2tr,*m — 4°g + °p|§) dAs;.
s

16T r—oo

Therefore, there are families of asymptotics other than the ones defined

earlier that admit well-defined notions of energy and linear momentum.
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E-P Chargeability

We say that (M, g, K, p, J) is E-P chargeable if there exist a spacelike hyper-
surface in Minkowski (Mo, g, Ko), compact sets Ko C My, K C M, and a
diffeomorphism at infinity

\UM()\’C()—)M\’C

such that the following integrals converge:

m(g, K, V) = im % [V(diveg — dtrog) — twvg + (trog)dV

+2(tak — (trK)a)) + (trog)ra Ko
+ (Ko, 8o — 2a(& © Ko)] (n)dAs2,

for any V € {Vo,V1,V,,Vs}, where Vo, V;,i = 1,2,3 are the KIDs
on (Mo, g, Ko) corresponding to the time and spatial translations in
Minkowski. Here, dAS% is the area element on the sphere of radius r in
(Mo, &), and n is the outward unit normal to S? within the bacgkround
manifold. As before, g := W*g — gy and K := W*K — K,.
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o lItis clear that (M, g, K) is E-P chargeable.
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It is clear that (M, g, K) is E-P chargeable.
Evolving (M, g, K) leads to an initial data set that is E-P chargeable.

E-P chargeability is preserved under evolution by the Einstein
equations if natural conditions are imposed on the subleading terms

of g and p.
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Observations

o We observe that the fluxes for energy and linear momentum in our
hyperboloidal approach closely mirror those in the Bondi-Sachs (null)

formalism.

10

e.g., Andersson, L, Chrusciel, P. T.: On “hyperboloidal” Cauchy data for vacuum Einstein equations and obstructions to smoothness of Scri (1994)
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Observations

o We observe that the fluxes for energy and linear momentum in our
hyperboloidal approach closely mirror those in the Bondi-Sachs (null)

formalism.

o The term Ogag + Opa,g plays a role akin to the News tensor in Bondi-Sachs
coordinates.

o The shear tensor is given by ':

1 1
Eaﬁ = (Aaﬁ - Ehp(sAp6haB> + ()\aﬁ - Ehpékpghag) 5

o A generic asymptotically hyperboloidal IDS considered earlier will not be
shear free.

10

e.g., Andersson, L, Chrusciel, P. T.: On “hyperboloidal” Cauchy data for vacuum Einstein equations and obstructions to smoothness of Scri (1994)
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1. Study the evolution of energy and linear momentum with respect to
more general observers
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1. Study the evolution of energy and linear momentum with respect to
more general observers

o What are the conditions that would preserve E-P chargeability?
2. Study the Hamiltonian charges and seek out discrepancies
3. Other conserved quantities - angular momentum and center of mass

4. Matter models
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Thank you! :)

Questions and comments are welcome!



