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Outline

Energy and linear momentum as geometric invariants on
asymptotically hyperboloidal initial data sets 1

Conceptually distinct from the Hamiltonian formulation

Approach: use Einstein evolution equations on a hyperboloidal initial
data set

Construct an appropriate time function
Build a hyperboloidal foliation

Derive a mass loss formula analogous to the Bondi formula2

Related: energy loss using Liu-Yau quasi-local mass3

1Michel, B.: Geometric invariance of mass-like asymptotic invariants (2011)
2Bondi, H., van der Burg, M.G.J., Metzner, A.W.K.: Gravitational waves in general relativity VII (1962)
3Chen, P.-N., Wang, M.-T., Yau, S.-T.: Conserved quantities on asymptotically hyperbolic initial data sets (2014)
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Introduction

Consider a spacetime (L, γ) and a time function t : R ⊇ (a, b) → R.

Level sets of t given by Mt with induced metric g and extrinsic
curvature K produce a local foliation of (L, γ).

The constraints operator is defined by:

Φ(g,K) :=

(
R + (trgK)2 − |K |2g
2divg(K − trgK · g)

)
=:

(
ΦH

ΦM

)
,

where Φ : M×M S2(T∗M) → C∞(M)× Γ(T∗M), with M the bundle
of metrics, and S2(T∗M) the bundle of symmetric (0, 2)-tensors on M.
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The Einstein Constraint Equations require that:

Φ
(
(t)g,(t)K

)
= (ρ, J).

The vacuum Einstein Evolution Equations are given by:Lν
(t)g = 2 (t)K ,

Lν
(t)K −

(t)∇2N
N

= 2
(
(t)K ◦ (t)K

)
− (t)Ric − ((t) tr (t)K )(t)K ,

where ν = 1
N (∂t − X), with N ∈ C∞(M) and X ∈ Γ(TM).
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Hyperboloids in Minkowski

We denote by (H3, b, b) the hyperboloid of radius 1 embedded in
Minkowski as a totally umbilic spacelike hypersurface

H3 := {(t, x) ∈ R3,1 | t2 = r2 + 1},

b =
1

1 + r2 dr
2 + r2σαβduαduβ ,

where σ is the standard round metric on the unit sphere. On the
hyperboloid, we use coordinates x = (r, uJ), where uJ ∈ S2 denote the
standard polar coordinates on the sphere.
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Benoit Michel Charges on Asymptotically Hyper-
boloidal Initial Data Sets

Consider an Initial Data Set (M, g,K) and a diffeomorphism at infinity Ψ

providing coordinates in which the above is asymptotic to the standard
hyperboloid in Minkowski. We denote the errors as follows,

ġ = Ψ∗g − b, and K̇ := Ψ∗K − b.

We use the constraint operator Φ as the charge density.

Note that Φb = (0, 0).
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The linearization of Φ at (H3, b, b) is given by

DΦb(ġ, K̇) =

(
divbdivbġ +∆btrbġ − 2trbġ + 4trbK̇

dtrbġ − bij∇ġij − 2(divbġ − dtrbġ) + 2divbK̇ − dtrbK̇

)
.

Taylor expanding Φ and contracting with a test function V ∈ Γ(R⊕ T∗H)

leads to

⟨Φ(g,K)− Φb,V⟩b = ⟨DΦb(ġ, K̇),V⟩b +Q(V, (ġ, K̇)).

Now, integrating by parts:

⟨Φ(g,K),V⟩b = divbU(V, (ġ, K̇)) + ⟨D∗ΦbV, (ġ, K̇)⟩b +Q(V, (ġ, K̇)).
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With the above, we have a geometric invariant on (M, g,K) for each
non-trivial test function V for which D∗ΦbV = 0, given by the following,

m(ġ, K̇ ,V) := lim
k→∞

1
16π

∮
Sk

U(V, (ġ, K̇))(ν)dS,

where Sk = ∂Bk is smooth and compact, (Bk)k∈N is a non-decreasing
exhaustion of the background manifold, and ν and dS are the outer unit
normal and surface measure on Sk with respect to b.
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We obtained geometric invariants from elements V of ker(D∗Φ).

These are the Killing Initial Data (KIDs) of (H3, b, b) 45

The KID corresponding to time translation V0 and the KIDs
corresponding to the spatial translation Vi lead to the conserved
quantities of energy and linear momenta respectively.

4Maerten, D.: Killing initial data revisited (2004)
5Moncrief V.: Spacetime symmetries and linearization stability of the einstein equations (1974)
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Writing U(V, (ġ, K̇)) explicitly for a KID V = (V ,Y) = (V , α#), we have

m(ġ, K̇ ,V) = lim
r→∞

1
16π

∮ [
V
(
divbġ − dtrbġ

)
− ι∇V ġ + (trbġ)dV

+ 2
(
ιαK̇ − (trbK̇)α)

)
+ (trbġ)ιαKH3

+ ⟨KH3 , ġ⟩bα− 2ια(ġ ◦ KH3)
]
(n) dAS2

r
.

We note that

n =
∂

tang
r

|∂tang
r |η

= −r∂t |H3 +
√

1 + r2∂r |H3 .
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We obtain the definition of energy of an asymptotically hyperboloidal
initial data set:

Energy

E =
1

16π
lim
r→∞

∫
S2
r

V 2(divb ġ − d trbġ
)
− V trσ(ġαβ) + 2V trσ(K̇αβ) dAS2

r
,

for V0 = {V =
√

1 + r2, Y = −r
√

1 + r2∂
tang
r },

Linear Momentum

P i =
1

16π
lim
r→∞

∫
S2
r

(
V 2(divbġ − dtrbġ

)
− V trσ(ġαβ) + 2V trσ(K̇αβ)

)
x idAS2

r
,

for
V1 = {V1 = −r sin θ cosφ, Y1 = −gradbV1},
V2 = {V2 = −r sin θ sinφ, Y2 = −gradbV2},
V3 = {V3 = −r cos θ, Y3 = −gradbV3}.
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Asymptotically Hyperboloidal IDS

An initial data set (M, g,K , ρ, J) is asymptotically hyperboloidal if there exist compact sets
B ⊂ M and B0 ⊂ H3, and a diffeomorphism at infinity

Ψ : M \ B → H3 \ B0,

such that the (0, 2)-symmetric tensors on H3 \ B0

ġ := Ψ∗g − b, p := Ψ∗K −Ψ∗g

have the following asymptotic behavior as r → ∞:

ġrr =
mrr

r5
+

m̃rr

r6
+ O2(r−7),

ġrα =
grα

r3
+ O2(r−4),

ġαβ = 0gαβ +
gmαβ

r
+

gm̃αβ

r2
+ O2(r−3),

prr =
prr

r5
+

p̃rr

r6
+ O1(r−7),

prα =
prα

r3
+ O1(r−4),

pαβ = 0pαβ +
kmαβ

r
+

km̃αβ

r2
+ O1(r−3).
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mrr , prr , m̃rr and p̃rr are functions on S2 that do not depend on r .

grα and prα are one-forms that do not depend on r .
0gαβ , 0pαβ , gmαβ , kmαβ , gm̃αβ and km̃αβ are symmetric
(0, 2)-tensors on S2 which do not depend on r .

we assume that 0gαβ , 0pαβ , gm̃αβ and km̃αβ are traceless with
respect to σ.

the indices on these tensors are raised and lowered with respect to
σαβ .

All terms in the expansion of ġ are in C2(S2) and those in the
expansion of p are in C1(S2).
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All terms in the expansion of ġ are in C2(S2) and those in the
expansion of p are in C1(S2).

12 / 30



Comparison to other definitions of asymptotically hyperboloidal initial
data sets:

1. Chen, Wang and Yau 6: no traceless assumption on gm̃αβ and km̃αβ .

2. Wang 7: used in the proof of the positive mass theorem with the Jang
equation, does not incorporate radiation.

6Conserved quantities on asymptotically hyperbolic initial data sets (2014)
7The Mass of Asymptotically Hyperbolic Manifolds (2001)
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The energy and linear momentum of an asymptotically hyperboloidal
initial data set (M, g,K) are given as follows:

Energy of an AH IDS

E =
1

16π

∫
S2

2mrr + 3 trσ gm + 2trσ km dAS2 .

Linear Momentum of an AH IDS

P i =
1

16π

∫
S2

(
2mrr + 3 trgσm + 2trkσm

)
x i dAS2 ,

where x i, i = 1, 2, 3 denote the first spherical harmonics on the unit
sphere S2.
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Choice of Evolution

The vector field ν chosen for evolution is everywhere timelike -
definition of a local time function

We need a time function providing a suitable foliation by
hyperboloids at infinity.

Other foliations: foliations by asymptotically Euclidean slices or
Milne foliations do not lead to a measurement of radiation8.

8Zenginoğlu, A.: Bridging time across null horizons (2025)
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Figure 1: Milne foliation Figure 2: foliations by
t = constant slices (AE)
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Consider the Minkowski spacetime (R3,1, η), and a time function

τ := t − h(r),

where the height function h(r) needs to be chosen appropriately to ensure
that ∇τ is timelike near infinity.

The (3 + 1) decomposition of Minkowski with respect to τ is:

ds2 = −dτ 2 − 2h′(r)dτdr + (1 − (h′(r))2)dr2 + r2dσ2.
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For the choice
h′(r) = 1 − 1

2r2 + O2(r−3),

we obtain that the {τ = const} hypersurfaces are hyperboloids of radius 1.
The standard hyperboloidal initial data (H3, b, b) is obtained with the
choice

h(r) =
√

1 + r2,

and the lapse and shift on this initial data corresponding to the standard
Killing time in Minkowski are

N =
√

1 + r2 , X r = −r
√

1 + r2.

It is easy to check that:

L∂τ b = LNν+X = 0.
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Figure 3: Hyperboloidal foliation 9

9Zenginoğlu, A.: How to draw Penrose diagrams
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Evolution of Energy and Linear Momentum

Theorem

Let (M, g,K , ρ, J) be an asymptotically hyperboloidal initial data set
with respect to a diffeomorphism Ψ : H3 \ B0 → M \ B, where B ⊂
M,B0 ⊂ H3 are compact sets, and assume that supp(ρ), supp(J) ⊂
B.

Let τ be the standard time function defining a foliation of stan-
dard hyperboloids in Minkowski, and letN and X be the correspond-
ing lapse and shift. We denote the foliation of the globally hyper-
bolic development of (M, g,K) = {τ = 0}, by

(M× {τ}, g(τ),K(τ)),

with τ ∈ (−ε, ε), for some ε > 0. Then, the energy E(τ) is well-
defined on each leaf of the foliation (M× {τ}, g(τ),K(τ)) and sat-
isfies

∂

∂τ
E(τ) = − 1

4π

∫
S2

∣∣0g + 0p
∣∣2
σ
dAS2 .
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Sketch of Proof: The Einstein evolution equations in vacuum are given by

∂

∂τ
g = 2NK + LXg,

and
∂

∂τ
K = HessN − NRic + 2N(K ◦ K)− NHK + LXK .

Using the above, we get:

∂

∂τ
E(τ) =

1
16π

lim
r→∞

∫
S2
r

[
V 2divb(2NK + LXg)(∂r)

− V 2dtrb(2NK + LXg)(∂r)− V trb(2NKαβ + LXgαβ)

+ 2V trb
(

HessαβN − NRicαβ + 2N(K ◦ K)αβ − NHKαβ

)
+ 2V trb

(
LXKαβ

)]
dAS2

r
.
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Note that the asymptotics considered earlier are not preserved upon
evolution, e.g.,

LX ġαβ = gmαβ + 2
gm̃αβ

r
+ O1

(
r−2) ,

and
LX ġrr =

mrr

r4 + 2
m̃rr

r5 + O1
(
r−6)

After several cancellations, we obtain

∂

∂τ
E(τ) =

1
16π

lim
r→∞

∫
S2
r

(
− 4

r2 |
0g + 0p|2σ +

2
r2 divσprα +

1
r2 divσgrα

)
dAS2

r

+
1

16π
lim
r→∞

∫
S2
r

( 4
r2 trσgm̃ +

4
r2 trσ

(gm̃ + km̃
) )

dAS2
r
.

Using our hypothesis, we obtain the result.
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Note that the asymptotics considered earlier are not preserved upon
evolution, e.g.,

LX ġαβ = gmαβ + 2
gm̃αβ

r
+ O1

(
r−2) ,

and
LX ġrr =

mrr

r4 + 2
m̃rr

r5 + O1
(
r−6)

After several cancellations, we obtain

∂

∂τ
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1
16π

lim
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S2
r
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Linear Momentum: The statement and proof for the evolution of the
linear momentum is entirely analogous, except for the additional condition
that the following one forms are σ-divergences of symmetric tracefree
two-tensors gTαβ and kTαβ :

grα = divσgTαβ , prα = divσkTαβ ,

leading to
∂

∂τ
P i(τ) = − 1

4π

∫
S2

∣∣0g + 0p
∣∣2
σ
x i dAS2 .
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E-P Chargeability

The asymptotic structure of an asymptotically hyperboloidal initial data
set is not preserved under the Einstein evolution equations.

Consider the asymptotics of the τ = 1 leaf of the foliation, that we denote
by (M, ḡ, K̄) obtained from evolution of the τ = 0 AH IDS (M, g,K , ρ, J):

ḡrr = grr +
f(uA)
r4 ,

ḡαβ = gαβ + 2r
(0gαβ + 0pαβ

)
+ aαβ +

1
r
bαβ ,

K̄αβ = Kαβ − f(uA)σαβ − 2
r
|0g + 0p|2σσαβ ,

where f ∈ C2(S2), while aαβ ∈ C2(S2), and bαβ ∈ C1(S2), with bαβ
tracefree.
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The energy of the evolved initial data
(
M, ḡ, K̄

)
is then given by

E(τ = 1) =
1

16π
lim
r→∞

∫
S2
r

(
2mrr + 3trσgm + 2trσkm − 4|0g + 0p|2σ

)
dAS2

r
.

Therefore, there are families of asymptotics other than the ones defined
earlier that admit well-defined notions of energy and linear momentum.
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E-P Chargeability

We say that (M, g,K , ρ, J) is E-P chargeable if there exist a spacelike hyper-
surface in Minkowski (M0, g0,K0), compact sets K0 ⊂ M0,K ⊂ M, and a
diffeomorphism at infinity

Ψ : M0 \ K0 → M \ K

such that the following integrals converge:

m(ġ, K̇ ,V) = lim
r→∞

1
16π

∮ [
V
(
div0ġ − dtr0ġ

)
− ι∇V ġ + (tr0ġ)dV

+ 2
(
ιαK̇ − (tr0K̇)α)

)
+ (tr0ġ)ιαK0

+ ⟨K0, ġ⟩0α− 2ια(ġ ◦ K0)
]
(n)dAS2

r
,

for any V ∈ {V0,V1,V2,V3}, where V0,Vi, i = 1, 2, 3 are the KIDs
on (M0, g0,K0) corresponding to the time and spatial translations in
Minkowski. Here, dAS2

r
is the area element on the sphere of radius r in

(M0, g0), and n is the outward unit normal to S2
r within the bacgkround

manifold. As before, ġ := Ψ∗g − g0 and K̇ := Ψ∗K − K0.
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It is clear that (M, ḡ, K̄) is E-P chargeable.

Evolving (M, ḡ, K̄) leads to an initial data set that is E-P chargeable.

E-P chargeability is preserved under evolution by the Einstein
equations if natural conditions are imposed on the subleading terms
of ġ and p.
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Observations

We observe that the fluxes for energy and linear momentum in our
hyperboloidal approach closely mirror those in the Bondi–Sachs (null)
formalism.

The term 0gαβ + 0pαβ plays a role akin to the News tensor in Bondi-Sachs
coordinates.

The shear tensor is given by 10:

Ξαβ =

(
Aαβ − 1

2
hρδAρδhαβ

)
±

(
λαβ − 1

2
hρδλρδhαβ

)
.

A generic asymptotically hyperboloidal IDS considered earlier will not be
shear free.

10e.g., Andersson, L., Chruściel, P. T.: On “hyperboloidal” Cauchy data for vacuum Einstein equations and obstructions to smoothness of Scri (1994)
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Outlook

1. Study the evolution of energy and linear momentum with respect to
more general observers

What are the conditions that would preserve E-P chargeability?

2. Study the Hamiltonian charges and seek out discrepancies

3. Other conserved quantities - angular momentum and center of mass

4. Matter models
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Thank you! :)
Questions and comments are welcome!


