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Objectives

• Introduction to Black Hole Perturbation Theory (BHPT);

• Introduce the confluent Heun equation (CHE) and discuss its solutions:

◦ The general form of the CHE;

◦ The non-symmetrical canonical form of the CHE.

• The Teukolsky master equation for the Kerr family of spacetimes;

• The radial Teukolsky equation as a confluent Heun equation:

◦ Introduce the concept of Heun slice.

• The radial Teukolsky equation in compactified hyperboloidal coordinates within the

Minimal Gauge:

◦ Radial fixing gauge;

◦ Cauchy fixing gauge.

• Conclusions.
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Black Hole Perturbation Theory

The study of black hole perturbations has a long history, beginning with the work of Regge
and Wheeler (1956) for Schwarzschild black holes, and later extended by Zerilli (1970),
Vishveshwara (1970), Press (1971), Chandrasekhar and Detweiler (1975), and Teukolsky (1972,
1973, 1974) for Kerr black holes.

Why study black hole perturbations?

• Stability Analysis: Determining whether a black hole remains stable under small
disturbances;

• Black Hole Ringdown: Describing how a perturbed black hole settles down by emitting
gravitational waves;

• Gravitational Wave Astronomy: Understanding signals detected by LIGO and Virgo from
black hole mergers;

and many more.

How can we perturb the Kerr spacetime?

One approach is to linearise the Einstein field equations around the Kerr metric and derive a
set of perturbation equations.

Consequence: This method leads to perturbation equations, but these do not fully
decouple.

Solution: Teukolsky (1972-1974) overcame this issue by using the Newman-Penrose formalism
and deriving perturbation equations for the Weyl scalars Ψ0 and Ψ4 rather than the full
metric. This approach led to the Teukolsky master equation:

T sΨ = 0.

• It decouples perturbations, making them easier to solve;

• It separates into radial and angular equations, which can be solved independently;

• The radial equation can be written as a confluent Heun equation.
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The Confluent Heun Equation

In the past decade, there has been an increase of interest in the Heun functions in the context
of BHPT, Hortacsu (2011), Vieira (2016), Noda (2022), London (2020)-(2023).

The Heun equation is a second-order linear differential equation with four regular singular
points (y0, y1, y2,∞). When two singularities are brought into coincidence (y1 = y2) and ∞ is
an irregular singular point the Heun equation becomes a confluent Heun equation.

The general form of the confluent Heun equation is

d2

dy2
Y (y) +

 1∑
i=0

Ai

y − yi
+ E

 d

dy
Y (y) +

 1∑
i=0

Ci

y − yi
+

1∑
i=0

Bi

(y − yi)2
+ D

Y (y) = 0,

with y ∈ [0,∞). The regular singular points y0 and y1 are arbitrary, and so are the coefficients
Ai, Bi, Ci, D,E (Ronveaux, 1995).

The two linearly independent solutions are:

• Locally around yi by

Y (y) ∼ Ki+(y − yi)
ϱ
+
i + Ki−(y − yi)

ϱ
−
i ;

• Asymptotically by an expansion for y →∞ via

Y (y) ∼ K∞+
eyς+

yη+
+ K∞−

eyς−

yη− .

The K± are constants and the characteristic exponents are:

ϱ
±
i =

1− Ai

2
±

√(
1− Ai

2

)2

− Bi, ς
±

= −
E

2
±

1

2

√
E2 − 4D,

η
±

=
1∑

i=0

(
Ai

2
±

Ci − EAi/2√
E2 − 4D

)
.
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The non-symmetrical canonical form of the CHE

The non-symmetrical canonical form of the CHE arises by mapping the regular singular
points y0 and y1 into z0 = 0 and z1 = 1 via

z =
y − y0

y1 − y0
,

and via an s-homotopic transformation

Y (y(z)) = e
νz

z
µ0 (z − 1)

µ1Z(z),

with the parameters

µi =
1− Ai

2
±

√(
1− Ai

2

)2

− Bi, ν =
y1 − y0

2

(
−E ±

√
E2 − 4D

)
.

Then, the confluent Heun equation takes the form

d2Z(z)

dz2
+

(
γ

z
+

δ

z − 1
+ ϵ

)
dZ(z)

dz
+

αz − q

z(z − 1)
Z(z) = 0.

The function Z(z)’s behaviour around the regular singular points and asymptotically is
equivalent to the solution of the general CHE but with characteristic exponents:

ϱ+0 = 1− γ, ϱ+1 = 1− δ, ϱ−0 = ϱ−1 = 0,

ς+ = 0, ς− = −ϵ, η+ =
α

ϵ
, η− = γ + δ −

α

ϵ
.
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The Kerr family of spacetimes

The Kerr spacetime is a 2-parameter family of solutions to the vacuum Einstein field
equations

Ric[gab] = 0,

where gab is a 4-dimensional Lorentzian metric, describing a stationary, axisymmetric rotating
black hole.

In the standard Boyer-Lindquist coordinates xµ = (t, r, θ, ϕ) the Kerr line element takes
the form

ds
2

= −
(
1−

2Mr

r2 + a2 cos2 θ

)
dt2 −

4Mar

r2 + a2 cos2 θ
sin2 θ dt dφ +

r2 + a2 cos2 θ

∆(r)
dr2

+(r2 + a2 cos2 θ) dθ2 + sin2 θ

(
r2 + a2 +

2Ma2r

r2 + a2 cos2 θ
sin2 θ

)
dϕ2,

where the parameters M and a relate to the black hole’s mass and angular
momentum.

The condition ∆(r) = r2 − 2Mr + a2 = 0 determines the location of the event rh and Cauchy
rc horizons

rh = M

(
1 +

√
1−

a2

M2

)
, rc = M

(
1−

√
1−

a2

M2

)
.

The perturbation dynamics are dictated by the Teukolsky master equation.
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The Teukolsky Master Equation

The Teukolsky master equation for sΨ(xa) is:

−
[
(r2 + a2)2

∆(r)
− a2 sin2 θ

]
sΨ,tt(x

a)−
4Mar

∆(r)
sΨ,tϕ(xa)−

[
a2

∆(r)
−

1

sin2 θ

]
sΨ,ϕϕ(xa)

+∆−s(r) ∂r

(
∆s+1(r) sΨ,r(x

a)

)
+ 2s

[
M(r2 − a2)

∆(r)
+ (r + ia cos θ)

]
sΨ,t(x

a)

+2s

[
a(r −M)

∆(r)
+ i

cos θ

sin2 θ

]
sΨ,ϕ(xa) +

1

sin θ
∂θ

(
sin θ sΨ,θ(x

a)

)
− s(s cot2 θ − 1)sΨ(xa) = 0.

where s is the spin describing the type of perturbation.

One can separate the Teukolsky equation in the frequency domain by introducing a Fourier
decomposition

sΨ(t, r, θ, ϕ) =
1

2π

∫ ∞

−∞

∞∑
ℓ=|s|

ℓ∑
m=−ℓ

e
−iωt

e
imϕ

sRℓm(ω; r) sSℓm(ω; θ)dω.

This leads to two second-order ordinary differential equations, the angular Teukolsky equation
and the radial Teukolsky equation.

We will focus on the radial Teukolsky equation:

∆−s(r)
d

dr

(
∆s+1(r)

d

dr

)
sRℓm(ω; r) +

(
2isωr − a2ω2 − Aℓm

)
sRℓm(ω; r)

+
(ωΣ0)

2 − 4Mamωr + a2m2 + 2is
[
am(r −M)−Mω(r2 − a2)

]
∆(r)

sRℓm(ω; r) = 0.

Marica Minucci A spacetime interpretation of the confluent Heun functions in BHPT 7/21



The Teukolsky Master Equation

The Teukolsky master equation for sΨ(xa) is:

−
[
(r2 + a2)2

∆(r)
− a2 sin2 θ

]
sΨ,tt(x

a)−
4Mar

∆(r)
sΨ,tϕ(xa)−

[
a2

∆(r)
−

1

sin2 θ

]
sΨ,ϕϕ(xa)

+∆−s(r) ∂r

(
∆s+1(r) sΨ,r(x

a)

)
+ 2s

[
M(r2 − a2)

∆(r)
+ (r + ia cos θ)

]
sΨ,t(x

a)

+2s

[
a(r −M)

∆(r)
+ i

cos θ

sin2 θ

]
sΨ,ϕ(xa) +

1

sin θ
∂θ

(
sin θ sΨ,θ(x

a)

)
− s(s cot2 θ − 1)sΨ(xa) = 0.

where s is the spin describing the type of perturbation.

One can separate the Teukolsky equation in the frequency domain by introducing a Fourier
decomposition

sΨ(t, r, θ, ϕ) =
1

2π

∫ ∞

−∞

∞∑
ℓ=|s|

ℓ∑
m=−ℓ

e
−iωt

e
imϕ

sRℓm(ω; r) sSℓm(ω; θ)dω.

This leads to two second-order ordinary differential equations, the angular Teukolsky equation
and the radial Teukolsky equation.

We will focus on the radial Teukolsky equation:

∆−s(r)
d

dr

(
∆s+1(r)

d

dr

)
sRℓm(ω; r) +

(
2isωr − a2ω2 − Aℓm

)
sRℓm(ω; r)

+
(ωΣ0)

2 − 4Mamωr + a2m2 + 2is
[
am(r −M)−Mω(r2 − a2)

]
∆(r)

sRℓm(ω; r) = 0.

Marica Minucci A spacetime interpretation of the confluent Heun functions in BHPT 7/21



The Radial Teukolsky Equation as a Confluent Heun Equation

The radial Teukolsky equation can be written in the form of a general CHE:

d2

dr2
sRℓm(ω; r) +

(
1∑

i=0

Ai

r − ri
+ E

)
d

dr
sRℓm(ω; r)

+

(
1∑

i=0

Ci

r − ri
+

1∑
i=0

Bi

(r − ri)2
+ D

)
sRℓm(ω; r) = 0,

with regular singular points r0 = rc and r1 = rh, while the irregular singular point is
r =∞.

Two linearly independent solutions in the asymptotic region are provided by:

• A local solution around rh:

sRℓm(ω; r) ∼ KHp (r − rh)
ϱHp + KHf

(r − rh)
ϱHf ;

• An asymptotic solution via an expansion for r →∞

sRℓm(ω; r) ∼ K∞+ r
−η+

e
ς+r

+ K∞− r
−η−

e
ς−r

.

where K± can be chosen as for the “in”, “out”, “up” and “down” solutions.

The characteristic exponents are:

ϱCf
= −

iω

2κc
+

imΩc

2κc
− s, ϱCp =

iω

2κc
−

imΩc

2κc
,

ϱHp =
iω

2κh

−
imΩh

2κh

, ϱHf
= −

iω

2κh

+
imΩh

2κh

− s,

ς
±

= ±iω, η
+

= 1− 2iMω + 2s, η
−

= 1 + 2iMω.
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The Radial Teukolsky Equation in the canonical CHE form

Studies of the radial Teukolsky equation as a confluent Heun equation usually present it in the
non-symmetrical canonical CHE form:

d2

dz2
sRℓm(ω; z) +

(
γ

z
+

δ

z − 1
+ ϵ

)
d

dz
sRℓm(ω; z) +

αz − q

z(z − 1)
sRℓm(ω; z) = 0.

This form follows from the coordinate change

z =
r − rc

rh − rc
,

mapping r = {rc, rh,∞} into z = {0, 1,∞}, together with an s-homotopic
transformation

sRℓm(ω; r(z)) = z
µc (z − 1)

µhe
νz

sRℓm(ω; z).

The characteristic exponents are:

µ+
c = −s−

iω − imΩc

2κc
, µ−

c =
iω − imΩc

2κc
,

µ+
h

= −s−
iω − imΩh

2κh

, µ−
h

=
iω − imΩh

2κh

,

ν+ = i rhω (1− κ2), ν− = −i rhω (1− κ2).

There is a total of 8 combinations of {µc, µh, ν}!

• What is the effect of the s-homotopic transformation?

It modifies the behaviour of sRℓm(ω; r) around the singular points by

ϱ̃Cp/f
= ϱCp/f

−µc, ϱ̃Hp/f
= ϱHp/f

−µh, η̃∞± = η∞±+µc+µh, ς̃∞± = ς∞±−
ν

(rh − rc)
.

• What is the spacetime interpretation of the 8 configurations {µc, µh, ν}?
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Heun slices

We introduce a generic coordinate system x̃µ = (t̃, r, θ, ϕ̃) related to the BL coordinates
via

t = t̃− h(r),

ϕ = ϕ̃− ξ(r)

and a transformation for the Teukolsky master function sΨ(xµ) of the form

sΨ̃(x̃
µ
) = ζ

s
(r)sΨ(x

µ
).

The Fourier decomposition of sΨ̃(t̃, r, θ, ϕ̃) into the frequency domain shows that

sRℓm(ω; r)︸ ︷︷ ︸
BL radial function

= ζ(r)
−s

e
−iωh(r)

e
imξ(r)

sR̃ℓm(ω; r)︸ ︷︷ ︸
New radial function

A direct comparison against the s-homotopic transformation

sRℓm(ω; r(z)) = z
µc (z − 1)

µhe
νz

sRℓm(ω; z) where z =
r − rc

rh − rc
.

allows us to identify the functions h(r), ξ(r) and ζ(r) as modifications of r∗(r), χ(r) and ∆(r)
in the form

h(r) = a∞ r + 2M b∞ ln

(
r

rh

)
+

bh

2κh

ln

(
1−

rh

r

)
+

bc

2κc
ln

(
1−

rc

r

)
,

ξ(r) = c∞ ln

(
r

rh

)
+ ch

Ωh

2κh

ln

(
1−

rh

r

)
+ cc

Ωc

2κc
ln

(
1−

rc

r

)
,

ζ(r) = (r − rh)
dh (r − rc)

dc .

Each configuration is a choice of {µc, µh, ν}.
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Heun slices in the Carter-Penrose diagram of Kerr spacetimes

(--+)

(++-)

(---)

(+++)

(+--)

(-++)

(+-+)

(-+-)

The ± correspond to a
choice of {µc, µh, ν}

h(r), ξ(r) and ζ(r) for

t = t̃− h(r),

ϕ = ϕ̃− ξ(r)

and

sΨ̃(x̃
µ
) = ζ

s
(r)sΨ(x

µ
).
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Confluent Heun Functions and the Hyperboloidal Formalism

The confluent Heun functions arise from a coordinate transformation related to BL coordinates
via

t = t̃− h(r),

ϕ = ϕ̃− ξ(r)

mapping

sRℓm(ω; r)︸ ︷︷ ︸
BL radial function

= ζ(r)
−s

e
−iωh(r)

e
imξ(r)

sR̃ℓm(ω; r)︸ ︷︷ ︸
New radial function

Does the radial Teukolsky equation, expressed in compactified hyperboloidal
coordinates, take the form of a confluent Heun equation?

Boyer-Lindquist slices Hyperboloidal slices
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The Hyperboloidal Formalism

The hyperboloidal formalism consists of:

• A coordinate transformation x̄a = (t̄, σ, θ, ϕ̄) given by:

t = λ
(
t̄−H(σ, θ)

)
,

ϕ = ϕ̄− χ̄(σ),

with H(σ, θ) a height function, along with a compactification of the radial coordinate:

r = λ
ρ(σ)

σ
,

mapping r = {0, rc, rh} into σ = {σ0, σc, σh}.

• A conformal re-scaling of the Kerr metric:

ds̄
2

= Ω(σ)
2
ds

2
, Ω(σ) = σ/λ,

with the conformal metric ds̄2 regular in the domain σ ∈ [0, σ0).

In these coordinates sΨ̄(x̄a), the original Teukolsky master function, is transformed as

sΨ̄(x̄
a
)︸ ︷︷ ︸

Boyer-Lindquist master function

= Ω∆
−s

sΨ(x
a
)︸ ︷︷ ︸

Hyperboloidal master function

A Fourier decomposition of sΨ̄ into the frequency domain shows that

sRℓm(ω; r(σ))︸ ︷︷ ︸
Boyer-Lindquist radial function

= Ω∆
−s

e
−iωλH(σ)

e
imχ̄

sR̄ℓm(ω;σ)︸ ︷︷ ︸
Conformal radial function
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The Minimal Gauge

One considers the radial degree of freedom

ρ(σ) = ρ0 + ρ1σ, ρ0 =
rh

λ
− ρ1,

where the choice for ρ0 ensures that the radial transformation maps rh to σh = 1.

The Cauchy horizon and singularity assume the values

σc =
1− λρ1/rh

κ2 − λρ1/rh
, σ0 = 1−

rh

λρ1
.

One also introduces the dimensionless tortoise coordinates

x(σ) =
r∗(r(σ))

λ

= x∞(σ) + xh(σ) + xc(σ) + xcont,

so that
H(σ) = −x∞(σ) + xh(σ) + xc(σ).

The angular tortoise coordinate χ̄(σ) = χ(r(σ)) is

χ̄(σ) =
Ωh

2κh

ln(1− σ) +
Ωc

2κc
ln

(
1−

σ

σc

)
.

Eventually, there remains only the parameter ρ1 to fully fix the hyperboloidal
foliation.
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The Radial fixing gauge

The radial fixing gauge is characterised by setting ρ1 = 0 so that

r(σ) =
rh

σ
.

The radial compactification maps r = {0, rc, rh,∞} into σ = {σ0, σc, σh, σ∞} where
σ0 →∞.

The radial Teukolsky equation for sR̄ℓm(ω;σ) is not a confluent Heun equation because:

• The equation contains three regular singular points σ = {σ0, σc, σh} and one
irregular singular point σ∞ = 0;

• The resemblance of a confluent Heun equation when passing to σ is due to the absence of
the coefficients associated to σ0. However, this point is not an ordinary point of the
equation but a regular singular point of the equation;

• The radial equation along a hyperboloidal slice expressed in terms of z is

z(σ) =
1

σ

1− κ2σ

1− κ2
←→ σ(z) =

1

z + κ2(1− z)
.

so that the resulting equation does not assume the canonical form of the confluent Heun
equation.
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Comparison between the hyperboloidal slices in the
Radial fixing gauge with Heun slices

By looking at the s-homotopic
transformation of the hyperboloidal
radial function:

sRℓm(ω; r) = r
µ̄∞ (r − rh)

µ̄h (r − rc)
µ̄c e

ν̄r
sR̄ℓm(ω; r)

the triad (µ̄c, µ̄h, ν̄) directly relates
to the Heun configuration (+,+,+).
However, µ̄∞ ̸= 0 is absent in the
case of any Heun configuration.

The coordinate transformation
introduces a regular singular point
corresponding to r = 0. Hence, the
radial Teukolsky equation
written in terms of compactified
hyperboloidal coordinate is not a
confluent Heun equation.
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The Cauchy fixing

The Cauchy fixing gauge is characterised by setting ρ1 =
rc

λ
from which it follows

r(σ) =
rh − rc

σ
+ rc ⇐⇒ σ(r) =

rh − rc

r − rc
,

mapping r = rc to σ = σc →∞. The surface r = 0 is mapped to a point σ = σ0 which lies
outside the domain σ ∈ [0,∞).

The radial Teukolsky equation for sR̄ℓm(ω;σ) is a confluent Heun equation in the
form

d2

dσ2 sR̄ℓm(ω;σ) +

( 1∑
i=0

Ai
(σ)

σ − σi

+
2∑

j=1

Ej
(σ)

(σ − σ2)j

)
d

dσ
sR̄ℓm(ω;σ)

+

(
1∑

i=0

(
Ci

(σ)

σ − σi

+
Bi

(σ)

(σ − σi)2

)
+

4∑
j=1

Dj
(σ)

(σ − σ2)j

)
sR̄ℓm(ω;σ) = 0

because:

• The differential equation has two regular singular points σ = {σh, σc} and one
irregular singular point σ∞ = 0;

• The coefficients do not satisfy the CHE constraints ensuring that the point σc →∞ is not
an ordinary point but a singular point of the equation;

• The radial Teukolsky equation one obtains by introducing z as

z(σ) =
1

σ
←→ σ(z) =

1

z
.

assumes the form of a canonical CHE with two regular singular points z = {zc, zh}
and an one irregular singular point z = z∞.
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Comparison between the hyperboloidal slices in the
Cauchy fixing with Heun slices

By looking at the s-homotopic
transformation of the hyperboloidal
radial Teukolsky equation:

sRℓm(ω; r) = (r − rh)
µ̄h (r − rc)

µ̄c e
ν̄r

sR̄ℓm(ω; r)

the triad (µ̄c, µ̄h, ν̄) directly relates
to the Heun configuration (+,+,+).
However, in contrast to the radial
fixing case µ̄∞ = 0. So we have the
same type of s-homotopic
transformation one has for a CHE.
Hence, the radial Teukolsky
equation written in terms of
compactified hyperboloidal
coordinates is a CHE.

The s-homotopic transformation with
coefficients {µ̄c, µ̄h, ν̄} reproduces
the Ansatz introduced by the Leaver
(1985), which allows the spacetime
interpretation of his approach as the
frequency domain representation of
Teukolsky equation in the
hyperboloidal Cauchy fixing gauge.

Marica Minucci A spacetime interpretation of the confluent Heun functions in BHPT 18/21



Carter-Penrose diagrams representing hyperboloidal slices
for the two gauge choices

If we compare the height functions:

Hrf (r) = −r + 2M ln

(
r

rh

)
+

1

2κh

ln

(
1−

rh

r

)
+

1

2κc
ln

(
1−

rc

r

)
,

Hcf (r) = −r − 2M ln

(
r

rh

)
+

1

2κh

ln

(
1−

rh

r

)
−
(
2M +

1

2κh

)
ln

(
1−

rc

r

)
+ Hconst.

Hence, the choice of height function determines the presence of µ̄∞ ̸= 0 in the s-homotopic
transformation with the introduction of an additional regular singular point r = 0 (σ = σ0) in
the equation for sR̄ℓm(ω;σ).
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Conclusions and future perspectives

1. Reviewed the use of Heun functions in solving the radial Teukolsky equation, showing
that a spacetime-level coordinate transformation reproduces the effect of z and
s-homotopic transformations.

2. Introduced the concept of Heun slices, defined via new spacetime coordinate systems,
and connected their geometry to properties of Heun functions.

3. Demonstrated that the canonical confluent Heun equation form naturally arises from
specific spacetime foliations, with configurations labelled by triplets of signs (−− +),
(+ +−).

4. Highlighted the importance of the slicing configuration for the asymptotic behaviour of
radial perturbations, linking characteristic exponents to properties of null infinity

(I+/I−), spatial infinity (i0), and time infinity (i±).

5. Explored hyperboloidal coordinates, noting that some height function choices, like
Cauchy fixing, compatible with the Minimal Gauge can lead to an radial Teukolsky
equation in the form of a confluent Heun equation.
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Thank you!

Any questions?
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