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Traditional 3 + 1 foliation and hyperboloidal foliation

For asymptotically flat space-times, traditional 3 + 1 foliation does not cover the

future null infinity I +, but some key physical quantities, e.g. the radiated energy and

angular momentum of the gravitational wave or decay rates of the late-time tail of BH

perturbations, should be calculated at I +.

In order to obtain such quantities, one needs to put an artificial boundary (and the

corresponding BC) at a large distance and extract those quantities there

(approximately).

Hyperboloidal foliation (as a special kind of 3 + 1) solves the above problems by

covering I + with a properly designed time slicing.

[A. Zenginog̃lu, arXiv:0712.4333]



Introduction Static solutions and quasi-normal modes of de Sitter (dS) black holes in hyperboloidal coordinates Nonlinear evolution of unstable charged dS black holes in hyperboloidal coordinates Summary and outlook

Traditional 3 + 1 foliation and hyperboloidal foliation

For asymptotically flat space-times, traditional 3 + 1 foliation does not cover the

future null infinity I +, but some key physical quantities, e.g. the radiated energy and

angular momentum of the gravitational wave or decay rates of the late-time tail of BH

perturbations, should be calculated at I +.

In order to obtain such quantities, one needs to put an artificial boundary (and the

corresponding BC) at a large distance and extract those quantities there

(approximately).

Hyperboloidal foliation (as a special kind of 3 + 1) solves the above problems by

covering I + with a properly designed time slicing.

[A. Zenginog̃lu, arXiv:0712.4333]



Introduction Static solutions and quasi-normal modes of de Sitter (dS) black holes in hyperboloidal coordinates Nonlinear evolution of unstable charged dS black holes in hyperboloidal coordinates Summary and outlook

Example: hyperboloidal coordinates for the Schwarzschild space-time

The original Schwarzschild coordinates

ds2 = −f (r)dt2 + dr2

f (r)
+ r2dΩ2,

f (r) = 1− 2M

r

The in-going Eddington-Finkelstein

coordinates (3 + 1, in a Kerr-Schild form)

ds2 = −dt2+dr2+r2dΩ2+(1−f )(dt−dr)2

Figure: Comparison of foliations between the

ingoing Eddington-Finkelstein and hyperboloidal

coordinates of the Schwarzschild space-time
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Example: hyperboloidal coordinates for the Schwarzschild space-time

Taking the transformation through the height function technique

T = t − h(r), Z =
L2

r
, (1.1)

one can obtain the hyperboloidal coordinates:

ds2 = L2

Z2
[−dT2 + (dZ + HdT)2] + L4

Z2
dΩ2 (1.2)

with L an appropriate length scale and the “shift” function

H(Z)2 = 1− Z2

L2
f (r) = 1− Z2

L2
+

2MZ3

L4
.

At the boundary positions H2 = 1, since either Z = 0 or f (r) = 0.
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Example: hyperboloidal coordinates for the Schwarzschild space-time

L is so chosen that

H(Z) = (±)

√
1− Z2

L2
+

2MZ3

L4

can be a continuous real function decreasing monotonically from 1 to −1 in the range

Z ∈ [0,Zh =
L2

2M ], which means that H2 should have a zero at Z = Z0 and be positive

elsewhere (L =
√
27M ).
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Problem: instability of the RN-dS black hole

Hyperboloidal slices for black hole dynamics in the asymptotically flat case

[O. Rinne, arXiv:0910.0139; A. Vañó-Viñuales, S. Husa & D. Hilditch, arXiv:1412.3827; ...]

How about black hole dynamics in the asymptotically dS case with the hyperboloidal

formalism, where traditional methods does not even work?

An interesting problem: In certain parameter range the RN-dS black hole under

charged scalar perturbations is linearly unstable, but how will it evolve and what is

the final state of this instability?

[Z. Zhu et al., PRD (2014); Konoplya & Zhidenko, PRD (2014)]

A no-charged-scalar-hair theorem for static dS black holes has been established,

which precludes the possibility of the formation of a hairy black hole.

[Y.-P. An & L. Li, EPJC (2023)]
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Hyperboloidal coordinates for the RN-dS space-time

One can obtain a closed-form RN-dS solution

in hyperboloidal coordinates (1.2), with

H(Z)2 = 1− Z2

L2
+

2M0Z
3

L4
− Q2

0Z
4

L6
+

ΛL2

3
,

where M0 and Q0 are the total mass and

charge of the black hole, respectively.

[Z.-T. He, Q. Chen, YT, C.-Y. Zhang & H. Zhang,

arXiv:2411.03193]

H(Z) should be a continuous real function

decreasing monotonically from 1 to −1 in the

range [Zc,Zh], with a zero at Z0.

Z
=
Zh

Z
=
Z
h

Z
=
Z
c

Z
=
Zc

1

Figure: Penrose diagram demonstrating the

hyperboloidal slices of the RN-dS spacetime,

which penetrate both the outer horizon of the

black hole and the cosmological horizon
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Linear stability analysis

The static background RN-dS black hole has been analytically obtained under the

hyperboloidal coordinates.

Computing the QNM on top of this background to reproduce the linear (in)stability

under the hyperboloidal coordinates

Traditional methods for computing QNM (too many to list here)

Linear perturbations and QNM under the hyperboloidal coordinates in the

asymptotically flat case through the height function technique

[A. Zenginog̃lu, arXiv:1102.2451]

Our choice: the linearized evolution scheme to deal with the nonlinear dynamics and

QNM in a unified framework

[R. Li, Y. Tian, H. Zhang & J. Zhao, arXiv:1506.04267; Y. Du, S. Lan, YT & H. Zhang,

arXiv:1511.07179]
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Linear stability analysis

The linearized evolution scheme for QNM:

Gauge is fixed in the same way as in the nonlinear dynamic evolution.

The equations of motion are linearized, which govern the dynamics of linear

perturbations, on top of analytical or numerical backgrounds.

Separation of variables is possible if the background has symmetries.

The linearized dynamics is either: 1) evolved in real time and then Prony or 2)

reformulated as a generalized eigenvalue problem

(A− ωB)P = 0 (2.1)

for the quasi-normal frequency ω, where the operators A and B depend on the

background and δΨ = P(Z)e−iωT is the collection of all the perturbation fields.
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The parameter region of instability
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Figure: λmin (lines below the filled dots) and λmax

(lines above the filled dots) as functions of µ (scalar

mass) with M0 = 0.2, Q0 = 0.3M0 and different ΛM
2
0

Linear instability occurs if

λmin < qQ0 < λmax with q the charge

parameter of the scalar field.

For a massless scalar field, unstable

modes appear for arbitrarily small Λ.

However, for massive scalar fields,

there exists a lower bound of Λ, below

which no instability can be observed.

The dependence of λmin on Q0 is very

soft, so we only show the results with

fixed Q0 here.
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Simulation of black hole dynamics under the hyperboloidal coordinates

The following gauge should work for nonlinear dynamics of spherically symmetric

black holes:

ds2 = L2

Z2
e−χ(T ,Z)[−dT2 + (dZ + H(T ,Z)dT)2] + L4

Z2
dΩ2. (3.1)

[Z.-T. He, Q. Chen, YT, C.-Y. Zhang & H. Zhang, arXiv:2411.03193]

As tests, it works very well in many dynamical processes of spherically symmetric

black holes in the asymptotically flat case (typically more efficient and more accurate

than traditional methods in long time evolution).
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Lagrangian of the system

Consider the Einstein-Maxwell-scalar-Λ (EMSΛ) system

S =
1

16πG

∫
d4x

√
−g [R− 2Λ− FµνF

µν + 4Lm] , (3.2)

Lm = −DµψDµψ − µ2ψψ̄, Dµ := ∂µ − iqAµ (3.3)

To simplify the equations of motion, we introduce the following auxiliary variables

B = eχA′, (A := AT , AZ = 0) (3.4)

ζ = ψ̇ − Hψ′ − iqAψ, (3.5)

where dot and prime denote the derivative with respect to the temporal coordinate T

and the radial coordinate Z, respectively.
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Equations of motion in the hyperboloidal coordinates

A system of evolution equations with a very simple structure:

χ̇− 2Hχ′ = 4ZRe
[
ζψ̄′] (3.6)

Ḣ − 2HH ′ =
3(1− H2)

Z
− Z

e−χ

L2
+ Z3 e

−χB2

L2
+

e−χL2

Z

[
Λ + 2µ2|ψ|2

]
(3.7)

Ḃ− HB′ = −2qL2

Z2
Im
[
ψ̄ψ′] (3.8)

ψ̇ − Hψ′ = ζ + iqAψ (3.9)

ζ̇ − Hζ ′ = Z2

[(
ψ′

Z2

)′
+ ζ

(
H

Z2

)′]
+ iqAζ − µ2

L2

Z2
e−χψ (3.10)

Note that the pair of (3.9) and (3.10) forms a wave equation for ψ, while (3.6-3.8) are

advection equations.



Introduction Static solutions and quasi-normal modes of de Sitter (dS) black holes in hyperboloidal coordinates Nonlinear evolution of unstable charged dS black holes in hyperboloidal coordinates Summary and outlook

Equations of motion in the hyperboloidal coordinates

The constraints

0 =− (1− H2)χ′ + 2Z[|ζ|2 + |ψ′|2 + 2HRe
(
ζψ̄′)]

− Z3(
1− H2

Z3
)′ − Ze−χ

L2
+

Z3e−χB2

L2
+

e−χL2

Z

[
Λ + 2µ2|ψ|2

] (3.11)

0 = B′ +
2qL2

Z2
Im
[
ψ̄ζ
]

(3.12)

are preserved by the evolution equations, which can be used to check the numerical errors.

No artificial BC is needed at the event horizon or the cosmological horizon!
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Nonlinear dynamics and the final state of the instability

We have five fields {H , χ, ψ, ζ,B}, whose T derivative can be calculated through the

evolution equations (3.6-3.10).

T direction: explicit fourth-fifth order Runge-Kutta marching with adaptive steps (to

efficiently perform long time evolutions)

Z direction: Chebyshev pseudo-spectral expansion

Two constraints allow us to choose the initial data of 3 dynamical variables freely:

ψ(T = 0,Z) = k exp[−(
Z − c

w
)2], (3.13)

ζ(T = 0,Z) = −Hψ′, (3.14)

χ′(T = 0,Z) = 2Z|ψ′|2. (3.15)
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Characteristic Behaviors of the evolution of scalar fields
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Figure: Evolutions of the scalar field |ψh| on the apparent horizon (left) and the scalar field energy
Eψ (right) exhibit two distinct stages of the dynamics: the so-called superradiant growth stage and

relaxation stage.
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Discharge of the RN-dS black hole
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Figure: Evolutions of the black hole charge Qh

for different scalar mass µ.

Recall that the smaller µ, the smaller

λmin, and λmin ≡ 0 when µ = 0.

Note that Qh decays exponentially when

µ = 0. In this case, the instablity will

not settle down until all the BH charge

has been extracted.

The results show that the smaller λmin

is, the more complete the charge

extraction will be.

The final state is a bald black hole.
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Numerical Errors and Convergence
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Figure: Left: The variation of the maximal Einstein and Maxwell constraint violations along the Z

direction with time. Right: The snapshots of the spectral coefficients of the field χ.



Introduction Static solutions and quasi-normal modes of de Sitter (dS) black holes in hyperboloidal coordinates Nonlinear evolution of unstable charged dS black holes in hyperboloidal coordinates Summary and outlook

Supplementary: QNM computation

For the RN-dS background, gravitational and electromagnetic perturbations are

decoupled from scalar perturbations and so can be consistently turned off.

Dynamics of scalar perturbations is governed by the linearization of the

corresponding equations of motion (3.9) and (3.10).

In the linearized evolution scheme for QNM computation, no BC is needed in the

hyperboloidal coordinates.

Time translation symmetry of the background enables the expansion with

quasi-normal modes δψ = ψ̃(Z)e−iωT and δζ = ζ̃(Z)e−iωT , which implies the

substitution

∂T → −iω

when plugged into the linearized equations of motion.
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Supplementary: QNM computation

The linearized equations of motion becomes

(A− ωB)

(
ζ̃

ψ̃

)
= 0 (3.16)

with differential operators

A =

(
1 H∂Z − iqQ0

Z
L2

∂ZH − 2
Z
H − iqQ0

Z
L2

∂2Z − 2
Z
∂Z − µ2 L2

Z2

)
, B = −i

(
0 1

1 0

)
, (3.17)

which is a generalized eigenvalue problem for ω.

Upon discretization in Z, the quasi-normal frequencies ω can be numerically obtained

as generalized eigenvalues of matrices.
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Summary and outlook

The hyperboloidal formalism has the advantage of no need to put artificial BC when

dealing with asymptotically flat or dS black holes.

The nonlinear evolution of unstable charged de Sitter black holes can be performed

with high efficiency and long term accuracy in a simple form of hyperboloidal

coordinates.

It seems not easy to generalize our simple nonlinear formalism to less symmetric

cases.

Further exploration of optimized/adapted formalisms of NR for various problems is

still interesting and important.
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Thank You!
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