



Engineering and Physical Sciences Research Council

# Generalising Hyperboloidal Methods for Non-Relativistic Systems



Based on C. Burgess, F. Koenig. Frontiers in Physics 12:1457543 (2024) & C. Burgess, et al. Physical Review Letters 132:053802 (2024)

# **Hyperboloidal Methods**

for Quasinormal Mode Frequencies

 $\omega = \omega_R + i\omega_I$ 

| Review  | Quasinormal Modes & Wave Equation |
|---------|-----------------------------------|
| Content | Schrödinger                       |
| Outlook | Beyond Schrödinger                |
|         |                                   |

## Review

# **Quasinormal Modes**

$$\omega = \omega_R + i\omega_I$$

### **Quasinormal Modes** vs Normal Modes

**Generalising Hyperboloidal Methods** for Non-Relativistic Systems

**Christopher Burgess** 17th January 2025

#### Normal modes



 $\phi(r,t) = u(r)T(t)$ Separation of variables Conservative **Oscillatory & Periodic Real eigenvalues** Spectral theorem **Field expansion** 

$$T(t) = e^{-i\omega t}$$
$$\omega = \omega_B$$

 $\phi \sim \int \mathrm{d}\omega \ A(\omega) u_{\omega}(r) e^{-i\omega t}$ 

Separation of variables Dissipative **Oscillatory & Decaying Complex eigenvalues** No spectral theorem Ringdown expansion<sup>[1]</sup>

 $\phi(r,t) = u(r)T(t)$ 

 $T(t) = e^{-i\omega_R t} e^{\omega_I t}$  $\omega = \omega_R + i\omega_I$ 

 $\phi \sim \sum a_{\omega} u_{\omega}(r) e^{-i\omega t}$ 

Christopher Burgess 17th January 2025

# How can a conservative wave equation have QNMs?



# Review

# Wave Equation

$$\left(\partial_t^2 - \partial_r^2 + V\right)\phi = 0$$

Wave Equation QNM Problem Statement

Generalising Hyperboloidal Methods for Non-Relativistic Systems

Wave EquationMode Equation
$$\left(\partial_t^2 - \partial_r^2 + V\right)\phi = 0$$
 $\left(-\omega^2 - \partial_r^2 + V\right)u = 0$  with  $\phi = ue^{-i\omega t}$ Boundary Conditions<sup>[2]</sup> $\phi \sim e^{ikr - i\omega t}$  as  $r \to \pm \infty$  with  $k = \pm \omega$  $r \to -\infty \quad v \to -1$  $r \to +\infty \quad v \to +1$  $v = \omega/k$  $r \to +\infty \quad v \to +1$ 

Christopher Burgess 17th January 2025

# Compactified Hyperboloidal Method for Quasinormal Modes<sup>[3,4]</sup>

 $t = \tau - h(x) \qquad r = g(x)$ I. Coordinate Transformation  $\psi = \partial_{\tau} \phi$ **II.** Reduction in Time III. Eigenvalue Problem  $Lu = \omega u$  $L \to L^N \quad u \to u^N$ **IV.** Discretization  $\omega \in \{1.00 - 0.50i, 1.00 - 1.50i, \ldots\}$ V. Numerical Solver

[3] A. Zenginoğlu. Journal of Computational Physics 230:2286 (2011)
[4] J. Jaramillo, *et al.* Physical Review X 11:031003 (2021)

Christopher Burgess 17th January 2025



#### **Modified Pöschl-Teller**







Boyanov et al. PHYS. REV. D 107, 064012 (2023)



#### **Reissner-Nordström BH**



Macedo et al. PHYS. REV. D 98, 124005 (2018)

Christopher Burgess 17th January 2025

## I. Coordinate Transformation



$$t = \tau - h(x)$$
  $r = g(x)$ 

au : asymptotic contours of constant field

**Partial Derivatives** 

$$\partial_t = \partial_ au \qquad \partial_r = rac{\partial_x h}{\partial_x g} \partial_ au + rac{1}{\partial_x g} \partial_x$$

**QNM Solutions** 



finite everywhere on the space

 $\implies \partial_\tau \psi = L_1 \phi + L_2 \psi$ 

Generalising Hyperboloidal Methods for Non-Relativistic Systems Christopher Burgess 17th January 2025

# II. Reduction in Time

$$\psi = \partial_\tau \phi$$

spatial operators  $\ L_1, L_2$ 

# III. Eigenvalue Problem

 $Lu = \omega u$ 

$$u = \begin{pmatrix} \phi \\ \psi \end{pmatrix} \qquad L = \frac{1}{i} \begin{pmatrix} 0 & 1 \\ L_1 & L_2 \end{pmatrix} \implies \text{self-adjoint in the bulk} \text{ non-selfadjoint on the boundary}$$

Wave Equation Discretization / Numerical Solver

Generalising Hyperboloidal Methods for Non-Relativistic Systems Christopher Burgess 17th January 2025

# **IV.** Discretization

$$L \to L^N \quad u \to u^N$$

**Chebyshev Extremal Points** 

$$x_j = \cos(j\pi/(N-1))$$



 $Lu = \omega u \implies L^N u^N = \omega u^N$ 



## V. Numerical Solver

# Content Schrödinger

$$(i\partial_t - \partial_r^2 + V)\phi = 0$$

**Generalized Wave Equations** 

Christopher Burgess 17th January 2025

**Quantum Mechanics** 

QNMs of "quantum" equation

**Analogue Gravity** 

higher-derivative theories:  $\sim (i\partial_r)^k$ 



[5] C. Burgess, *et al.* Physical Review Letters 132:053802 (2024)[6] E. Gross. Il Nuovo Cimento 20:454 (2007)

[7] T. Torres. Physical Review Letters 131:111401 (2023)

Christopher Burgess 17th January 2025

Schrödinger Equation Mode Equation 
$$(i\partial_t - \partial_r^2 + V)\phi = 0$$
  $(\omega - \partial_r^2 + V)u = 0$  with  $\phi = ue^{-i\omega t}$ 

**Boundary Conditions** 

 $\phi \sim e^{ikr - i\omega t}$  as  $r \to \pm \infty$  with  ${
m sgn}(j) \to \pm 1$  ("outgoing")

**Continuity Equation** 

$$\partial_t (\phi \phi^*) + \partial_r \left( i(\phi \partial_r \phi^* - \phi^* \partial_r \phi) \right) = 0$$

$$\int_{\text{density}} \rho$$

$$\int_{j < 1}^{\text{outgoing modes}} j < 1$$

$$\int_{j > 1}^{\text{outgoing modes}} j > 1$$

**Christopher Burgess** 17th January 2025

### Relativistic

### Non-relativistic

$$\left(\partial_t^2 - \partial_r^2 + V\right)\phi = 0$$

 $(i\partial$ 

e.o.m 
$$(i\partial_t - \partial_r^2 + V)\phi = 0$$

mode

$$-\omega^2 - \partial_r^2 + V\big) \, u = 0$$

$$\left(\omega - \partial_r^2 + V\right)u = 0$$



Christopher Burgess 17th January 2025

Non-Relativistic Compactified Hyperboloidal Method for Quasinormal Modes<sup>[8]</sup>

 $t = \tau - h(x)$  r = g(x)I. Coordinate Transformation  $\psi = \partial_{\tau} \phi$ **II.** Reduction in Time III. Eigenvalue Problem  $Lu = \omega u$  $L \to L^N \quad u \to u^N$ IV. Discretization  $\omega \in \{1.00 - 0.50i, 1.00 - 1.50i, \ldots\}$ **V.** Numerical Solver

Christopher Burgess 17th January 2025

**-**2

### I. Coordinate Transformation

$$t = \tau - h(x)$$
  $r = g(x)$   $\longrightarrow$   $\left(-i\partial_{\tau} + \left|\frac{\partial_x h}{\partial_x g}\partial_{\tau} + \frac{1}{\partial_x g}\partial_x\right|^2 - V\right)\phi = 0$ 

II. Reduction in Time

$$\psi = \partial_{ au} \phi \implies \partial_{ au} \psi = L_1 \phi + L_2 \psi$$
 spatial operators  $L_1, L_2$ 

III. Eigenvalue Problem

IV.

V.

$$Lu = \omega u \qquad u = \begin{pmatrix} \phi \\ \psi \end{pmatrix} \qquad L = \frac{1}{i} \begin{pmatrix} 0 & 1 \\ L_1 & L_2 \end{pmatrix}$$
Discretization
Numerical Solver
$$I = \frac{1}{i} \begin{pmatrix} 0 & 1 \\ L_1 & L_2 \end{pmatrix}$$

Schrödinger No Preferred Speed

Generalising Hyperboloidal Methods for Non-Relativistic Systems Christopher Burgess 17th January 2025

**Non-Relativistic Dispersion Relation** 

$$\omega = -k^2$$
  $v_g \sim \frac{\operatorname{Im}(\omega)}{\operatorname{Im}(k)}$ 

### **Contours of Constant Amplitude**

No unique coordinate transformation

$$t = \tau - h(x)$$
  $r = g(x)$ 





Christopher Burgess 17th January 2025





**Parametrized Height Function** 

$$h(x) = v_g^{-1} h_0(x) \qquad \qquad \frac{\Delta r}{\Delta t} \to \pm v_g$$

au : asymptotic contours of constant amplitude for modes of a given frequency

**Compactification Function** 

$$g(x) = g_0(x)$$

amplitude finite everywhere

### Schrödinger Phase Velocity ≠ Group Velocity

Generalising Hyperboloidal Methods for Non-Relativistic Systems Christopher Burgess 17th January 2025

**Dispersion Relation** 

 $\omega =$ 

$$= -k^2$$
  $v_g \sim rac{\mathrm{Im}(\omega)}{\mathrm{Im}(k)}$   $v_p \sim \frac{\mathrm{Im}(\omega)}{\mathrm{Im}(k)}$ 

$$v_p \sim \frac{\operatorname{Re}(\omega)}{\operatorname{Re}(k)}$$

at 
$$x = \pm 1$$

#### **Contours of Constant Amplitude & Phase**



Christopher Burgess 17th January 2025

## II. Parametrized Phase Rotation

phase rotation removes phase singularity for a given group/phase velocity mismatch

$$\hat{\phi} = e^{-i\Delta h_0(x)}\phi$$

amplitude & phase finite

everywhere

with  $\Delta = rac{1}{2}(v_g - v_p)$ 

group/phase velocity mismatch



Christopher Burgess 17th January 2025

# III. Reduction in Time

$$\hat{\psi} = \partial_{ au} \hat{\phi}$$

$$x^2 \partial_\tau \hat{\psi} = J_1 \hat{\phi} + J_2 \hat{\psi}$$

parametrized by  $v_g, v_p$ 

#### **Example:** Pöschl-Teller Potential

$$J_{1} = v_{g}^{2} \left[ V - i\Delta(1 - x^{2}) + \Delta^{2}x^{2} + 2(1 - i\Delta)x(1 - x^{2})\partial_{x} - (1 - x^{2})^{2}\partial_{x}^{2} \right]$$
$$J_{2} = v_{g} \left[ iv_{g} + 1 - x^{2} + 2i\Delta x^{2} + 2x(1 - x^{2})\partial_{x} \right]$$

### Schrödinger

Divergence at the Turning Point

Generalising Hyperboloidal Methods for Non-Relativistic Systems

$$x^{2}\partial_{\tau}\hat{\psi} = J_{1}\hat{\phi} + J_{2}\hat{\psi} \xrightarrow{?} \partial_{\tau}\hat{\psi} = L_{1}\hat{\phi} + L_{2}\hat{\psi}$$

$$\sim \left(\frac{\partial_{x}h}{\partial_{x}g}\right)^{2}$$
vanishes  
at  $x = r = 0$ 

Christopher Burgess 17th January 2025

# **IV.** Power Series Construction

$$\partial_{\tau}\hat{\psi} = \sum_{k=0}^{\infty} \frac{x^k}{k!} \partial_{\tau}\hat{\psi}^{(k)}\big|_{x=0}$$

**Separation of Terms** 

$$x^2 \partial_\tau \hat{\psi} = x^2 (L_1^a \hat{\phi}_a + L_2^a \hat{\psi}_a) + J_1^b \hat{\phi}_b + J_2^b \hat{\psi}_b$$
  
divisible by  $x^2$  indivisible by  $x^2$ 

Repeated differentiation of e.o.m. yields 
$$\left.\partial_ au \hat{\psi}^{(k)}
ight|_{x=0}$$

$$\partial_{ au}\hat{\psi}_a = L_1^a\hat{\phi}_a + L_2^a\hat{\psi}_a$$
  
 $x^2\partial_{ au}\hat{\psi}_b = J_1^b\hat{\phi}_b + J_2^b\hat{\psi}_b$ 

 $\hat{\psi} = \hat{\psi}_a + \hat{\psi}_b$ 

**Equation of Motion** 

$$x^2 \partial_\tau \hat{\psi} = J_1 \hat{\phi} + J_2 \hat{\psi}$$

$$\partial_\tau \hat{\psi} = L_1 \hat{\phi} + L_2 \hat{\psi}$$

Christopher Burgess 17th January 2025

$$L_{\omega}u = \omega u$$

$$L = L_{\omega}$$
 parametrized by  $v_g, v_p \sim \omega_R, \omega_I$   $u \equiv \begin{pmatrix} \hat{\phi} \\ \hat{\psi} \end{pmatrix}, L \equiv i \begin{pmatrix} 0 & 1 \\ L_1 & L_2 \end{pmatrix}$ 

1

**Non-relativistic Dispersion Relation** 

$$\omega = -\frac{1}{2}v_g \left( v_p + i\sqrt{v_g(v_g - 2v_p)} \right)$$

uniquely defines quasinormal mode frequencies

Christopher Burgess 17th January 2025

# **VI.** Discretization

$$L \to L^N \quad u \to u^N$$

**Chebyshev Extremal Points** 

$$x_j = \cos(j\pi/(N-1))$$



discretization truncates power series!  $\partial_x^N \to \left(D^N\right)^N = 0$ 

 $Lu = \omega u \implies L^N u^N = \omega u^N$ 

 $\det\left(L^N - \omega \mathrm{Id}\right) = 0$ 

solve for QNM frequencies

Christopher Burgess 17th January 2025

## VII. Numerical Solver

$$\det \left( L^N - \omega \mathrm{Id} \right) = \det \left( \omega^2 \mathrm{Id} - i\omega L_2^N - L_1^N \right) = 0$$

**Example:** Pöschl-Teller Potential

$$M = \tilde{V} - \sqrt{\omega}(\sqrt{\omega} + 1)\mathrm{Id} + 2(\sqrt{\omega} + 1)X^{N}D^{N} + (2 - (X^{N})^{2})(D^{N})^{2} + \sum_{k=0}^{N-2} \frac{(X^{N})^{k}}{(k+2)!} \Delta^{N} \Big[ (k+2)V_{1}(D^{N})^{k+1} + (V_{0} + (\sqrt{\omega} + 2(k+2))(\sqrt{\omega} + 1))(D^{N})^{k+2} - (D^{N})^{k+4} \Big]$$

| M = | $(6.000 + 0.9428 \sqrt{\omega} + 0.6667 \omega)$ | -14.00 - 6.600 $\sqrt{\omega}$ - 4.000 $\omega$                     | 10.00 + 4.714 $\sqrt{\omega}$ + 1.333 $\omega$  | $-3.000 - 0.4714 \sqrt{\omega}$                                     |
|-----|--------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------|
|     | $10.50 + 6.600 \sqrt{\omega} + 2.000 \omega$     | -18.00 - 12.26 $\sqrt{\omega}$ - 4.667 $\omega$                     | <b>7.000</b> + <b>3.300</b> $\sqrt{\omega}$     | -0.5000 + 0.9428 $\sqrt{\omega}$ + 0.6667 $\omega$                  |
|     | $-0.5000 + 0.9428 \sqrt{\omega} + 0.6667 \omega$ | <b>7.000</b> + <b>3.300</b> $\sqrt{\omega}$                         | -18.00 - 12.26 $\sqrt{\omega}$ - 4.667 $\omega$ | <b>10.50</b> + <b>6.600</b> $\sqrt{\omega}$ + <b>2.000</b> $\omega$ |
|     | -3.000-0.4714 Vw                                 | <b>10.00</b> + <b>4.714</b> $\sqrt{\omega}$ + <b>1.333</b> $\omega$ | $-14.00 - 6.600 \sqrt{\omega} - 4.000 \omega$   | 6.000 + 0.9428 $\sqrt{\omega}$ + 0.6667 $\omega$                    |

Christopher Burgess 17th January 2025

## Non-Relativistic Compactified Hyperboloidal Method for Quasinormal Modes

| • | I.   | Parametrized Coordinate Transforma | tion | $t = \tau - v_g^{-1} h_0(x)$                                                     | r = g(x)               |  |
|---|------|------------------------------------|------|----------------------------------------------------------------------------------|------------------------|--|
| • | п.   | Parametrized Phase Rotation        |      | $\hat{\phi} = e^{-i\Delta h_0(x)}\phi$                                           |                        |  |
| • | III. | Reduction in Time                  |      | $\hat{\psi}=\partial_	au\hat{\phi}$                                              |                        |  |
| • | IV.  | <b>Power Series Construction</b>   |      | $\partial_{\tau}\hat{\psi} = \sum (x^k/k!)\partial_{\tau}\hat{\psi}_{x=0}^{(k)}$ |                        |  |
| • | V.   | Implicit Eigenvalue Problem        |      | $L_{\omega}u = \omega$                                                           | vu                     |  |
|   | VI.  | Discretization                     |      | $L \to L^N  u$                                                                   | $\rightarrow u^N$      |  |
|   | VII. | Numerical Solver                   | Π    | $\omega \in \{1.00 - 0.50i, 1.$                                                  | $00 - 1.50i, \ldots\}$ |  |
|   |      |                                    |      |                                                                                  |                        |  |

Christopher Burgess 17th January 2025

#### Potential

$$V = V_0 \operatorname{sech}^2(r)$$





Christopher Burgess 17th January 2025

#### Potential

$$V = V_0 \operatorname{sech}^2(r) + \epsilon \Delta V$$





### Schrödinger Double-Soliton Potential

Generalising Hyperboloidal Methods for Non-Relativistic Systems Christopher Burgess 17th January 2025

#### **Potential**

$$V = V_0 \left( \operatorname{sech}(r-a) + \operatorname{sech}(r+a) \right)^2$$



#### **Results**



### Outlook

# **Beyond Schrödinger**

 $\left(\sum_{j=1}^{n} a_j (i\partial_t)^j - \sum_{j=1}^{m} b_j (-i\partial_r)^j - V\right)\phi = 0$ 

### **Beyond Schrödinger**

Motivations

Generalising Hyperboloidal Methods for Non-Relativistic Systems

Christopher Burgess 17th January 2025





(un)stable to weak dispersion?

Lorentz violation in quantum gravity

Hydrodynamic vortex flows<sup>[9,10]</sup>



classical



quantum

#### Generalization of the QNM concept

Rich phenomenology New questions Possibility of new insights

[9] S. Patrick, *et al.* Physical Review Letters 121:061101 (2018) [10] P. Švančara *et al.* Nature 628:66 (2024)

### Beyond Schrödinger Status of Mode Analogies

Generalising Hyperboloidal Methods for Non-Relativistic Systems Christopher Burgess 17th January 2025

#### **Generalized Wave Equation**

$$\left(\sum_{j=1}^{n} a_j (i\partial_t)^j - \sum_{j=1}^{m} b_j (-i\partial_r)^j - V\right)\phi = 0$$

#### **Corresponding Mode Equation**

$$\left(\sum_{j=1}^{n} a_j \omega^j - \sum_{j=1}^{m} b_j (-i\partial_r)^j - V\right) u = 0$$

 $\sum_{j=1}^{n} a_{j} \omega^{j} \leftrightarrow \omega \qquad \sum_{j=1}^{n} a_{j} (i\partial_{t})^{j} \leftrightarrow i\partial_{t}$ 

### **Generalized Schrödinger Equation**

$$\left(i\partial_t - \sum_{j=1}^m b_j(-i\partial_r)^j - V\right)\phi = 0$$

### **Corresponding Mode Equation**

$$\left(\omega - \sum_{j=1}^{m} b_j (-i\partial_r)^j - V\right) u = 0$$

Beyond Schrödinger Generalized QNM Problem Statement

Generalising Hyperboloidal Methods for Non-Relativistic Systems Christopher Burgess 17th January 2025

outgoing

modes

MM≯

j > 1

**Generalized Schrödinger Equation** 

$$\left(i\partial_t - \sum_{j=1}^m b_j(-i\partial_r)^j - V\right)\phi = 0$$

$$\left(\omega - \sum_{j=1}^m b_j (-i\partial_r)^j - V\right) u = 0$$
 with  $\phi = u e^{-i\omega t}$ 

outgoing

j < 1

**Boundary Conditions** 

**Generalized Continuity Equation** 

$$\frac{\partial_t(\psi\psi^*)}{\rho} + \partial_x \left[ \sum_{j=1}^m b_j \sum_{k=0}^{j-1} \left( (-i\partial_x)^k \psi \right) \left( (i\partial_x)^{j-1-k} \psi^* \right) \right] = 0$$

$$\frac{\text{current}}{j}$$



Beyond Schrödinger Phenomenology of Man<u>y Modes</u>

Generalising Hyperboloidal Methods for Non-Relativistic Systems



Beyond Schrödinger Phenomenology of Man<u>y Modes</u>

Generalising Hyperboloidal Methods for Non-Relativistic Systems



Beyond Schrödinger Phenomenology of Many Modes

Generalising Hyperboloidal Methods for Non-Relativistic Systems







Beyond Schrödinger Phenomenology of Many Modes

Generalising Hyperboloidal Methods for Non-Relativistic Systems







## Beyond Schrödinger Box Potentials

Generalising Hyperboloidal Methods for Non-Relativistic Systems



Outlook

# Summary



#### Summary

Generalizing Hyperboloidal Methods for Non-Relativistic Systems

Christopher Burgess 17th January 2025

### Schrödinger QNMs

- Generalization of QNM concept to the Schrödinger equation
- Direct application of hyperboloidal method to Schrödinger QNMs
- First steps to hyperboloidal method for QNMs of higher-order equations

**Generalized Wave Equation QNMs** 

- Generalization of QNM concept to higher-order equations
- New phenomenology in QNMs of higher-order equations

#### **St Andrews Team**



Pavlos Manousiadis

 Christopher Burgess
 Friedrich König

### Andleeb Zahra

Sang-shin Baak

#### **Relevant papers**

C. Burgess, F. Koenig. Frontiers in Physics 12:1457543 (2024) C. Burgess, *et al.* Physical Review Letters 132:053802 (2024)