

Based on C. Burgess, F. Koenig. Frontiers in Physics 12:1457543 (2024) & C. Burgess, *et al***. Physical Review Letters 132:053802 (2024)**

Hyperboloidal Methods

for Quasinormal Mode Frequencies

 $\omega = \omega_R + i\omega_I$

Review

Quasinormal Modes

$$
\omega=\omega_R+i\omega_I
$$

 $\vert \mathbf{I} \vert$

 $\begin{bmatrix} 1 & 1 \end{bmatrix}$

vs Normal Modes Quasinormal Modes

Generalising Hyperboloidal Methods for Non-Relativistic Systems

Christopher Burgess 17th January 2025

Normal modes

Separation of variables $\phi(r,t) = u(r)T(t)$ **Conservative Oscillatory & Periodic Real eigenvalues Spectral theorem Field expansion**

$$
T(t) = e^{-i\omega t}
$$

 $\omega = \omega_R$

 $\phi \sim \int d\omega A(\omega) u_{\omega}(r) e^{-i\omega t}$

Separation of variables Dissipative Oscillatory & Decaying Complex eigenvalues No spectral theorem Ringdown expansion[1]

 $\phi(r,t) = u(r)T(t)$

 $T(t) = e^{-i\omega_R t} e^{\omega_I t}$ $\omega = \omega_R + i\omega_I$

 $\phi \sim \sum a_{\omega} u_{\omega}(r) e^{-i \omega t}$

Christopher Burgess 17th January 2025

How can a conservative wave equation have QNMs?

Review

Wave Equation

$$
\left(\partial_t^2 - \partial_r^2 + V\right)\phi = 0
$$

 $\vert \hspace{0.4mm} \text{\rm I} \hspace{0.4mm} \text{\rm I} \hspace{0.4mm}$

 \overline{a}

QNM Problem Statement Wave Equation

Generalising Hyperboloidal Methods for Non-Relativistic Systems

Wave Equation
\n
$$
(\partial_t^2 - \partial_r^2 + V) \phi = 0 \qquad (-\omega^2 - \partial_r^2 + V) u = 0 \quad \text{with} \quad \phi = u e^{-i\omega t}
$$
\nBoundary Conditions^[2]
\n
$$
\phi \sim e^{ikr - i\omega t} \text{ as } r \to \pm \infty \quad \text{with} \quad k = \pm \omega
$$
\n
$$
\frac{r \to -\infty \quad v \to -1}{v = \omega/k}
$$

Christopher Burgess 17th January 2025

Compactified Hyperboloidal Method for Quasinormal Modes[3,4]

I. Coordinate Transformation $t = \tau - h(x)$ $r = g(x)$ $\psi = \partial_{\tau} \phi$ **II. Reduction in Time III. Eigenvalue Problem** $Lu = \omega u$ $L \to L^N$ $u \to u^N$ **IV. Discretization** $\omega \in \{1.00 - 0.50i, 1.00 - 1.50i, \ldots\}$ **V. Numerical Solver**

[3] A. Zenginoğlu. Journal of Computational Physics 230:2286 (2011) [4] J. Jaramillo, et al. Physical Review X 11:031003 (2021)

Christopher Burgess 17th January 2025

Modified Pöschl-Teller

Pöschl-Teller (& Pseudospectrum)

Boyanov *et al.* PHYS. REV. D **107**, 064012 (2023)

Reissner-Nordström BH

Macedo *et al.* PHYS. REV. D **98**, 124005 (2018)

Christopher Burgess 17th January 2025

I. Coordinate Transformation

$$
t=\tau-h(x)\qquad r=g(x)
$$

: asymptotic contours of constant field

Partial Derivatives

$$
\partial_t = \partial_\tau \qquad \quad \partial_r = \frac{\partial_x h}{\partial_x g} \partial_\tau + \frac{1}{\partial_x g} \partial_x
$$

QNM Solutions

finite everywhere on the space

 $\implies \partial_{\tau}\psi = L_1\phi + L_2\psi$

Generalising Hyperboloidal Methods for Non-Relativistic Systems

Christopher Burgess 17th January 2025

II. Reduction in Time

$$
\psi = \partial_\tau \phi
$$

spatial operators L_1, L_2

III. Eigenvalue Problem

 $Lu = \omega u$

$$
u = \begin{pmatrix} \phi \\ \psi \end{pmatrix} \qquad L = \frac{1}{i} \begin{pmatrix} 0 & 1 \\ L_1 & L_2 \end{pmatrix} \qquad \qquad \text{self-adjoint in the bulk} \qquad \text{non-selfadjoint on the boundary}
$$

Discretization / Numerical Solver Wave Equation

Generalising Hyperboloidal Methods for Non-Relativistic Systems

Christopher Burgess 17th January 2025

IV. Discretization

$$
L \to L^N \quad u \to u^N
$$

Chebyshev Extremal Points

$$
x_j = \cos(j\pi/(N-1))
$$

V. Numerical Solver

polynomial interpolation derivatives $\partial_x \rightarrow D^N$

 $u_{\rm int}(x) = \sum_{j=0}^{N-1} u(x_j) \prod_{k \neq j} \frac{x - x_k}{x_j - x_k}$ $D_{ij}^N = \frac{\sum_{l \neq j} \prod_{k \neq j, l} (x_i - x_k)}{\prod_{k \neq j} (x_j - x_k)}$

 $Lu = \omega u \implies L^N u^N = \omega u^N$

Schrödinger Content

$$
(i\partial_t - \partial_r^2 + V)\phi = 0
$$

ا ا

Generalized Wave Equations

Christopher Burgess 17th January 2025

Quantum Mechanics

QNMs of "quantum" equation

Analogue Gravity

13 / 42 [5] C. Burgess, et al. Physical Review Letters 132:053802 (2024) [7] T. Torres. Physical Review Letters 131:111401 (2023) [6] E. Gross. Il Nuovo Cimento 20:454 (2007)

Christopher Burgess 17th January 2025

Schrödinger Equation
\n
$$
(i\partial_t - \partial_r^2 + V)\phi = 0 \qquad (\omega - \partial_r^2 + V) u = 0 \quad \text{with} \quad \phi = ue^{-i\omega t}
$$

Boundary Conditions

 $\textsf{as} \quad r \to \pm\infty$ with $\text{sgn}(j) \to \pm 1$ ("outgoing")

Continuity Equation

$$
\frac{\partial_t(\phi\phi^*)}{\partial t}
$$
 + $\partial_r\left(i(\phi\partial_r\phi^* - \phi^*\partial_r\phi)\right) = 0$
 ϕ
 $\frac{\partial_t(\phi\phi^*)}{\partial t}$ $\frac{\partial_t(\phi\phi^*)}{\partial t}$

Christopher Burgess 17th January 2025

mode $\left(-\omega^2-\partial_r^2+V\right)u=0$

Relativistic Non-relativistic

e.o.m $(i\partial_t - \partial_r^2 + V)\phi = 0$

e.o.m

$$
\left(\partial_t^2-\partial_r^2+V\right)\phi=0
$$

$$
\begin{array}{c}\n\text{mode} \\
\end{array}
$$

$$
\left(\omega-\partial_r^2+V\right)u=0
$$

Christopher Burgess 17th January 2025

Non-Relativistic Compactified Hyperboloidal Method for Quasinormal Modes[8]

- **I. Coordinate Transformation** $t = \tau - h(x)$ $r = g(x)$ $\psi = \partial_{\tau} \phi$ **II. Reduction in Time III. Eigenvalue Problem** $Lu = \omega u$
- **IV. Discretization**
	- **V. Numerical Solver**

 $\omega \in \{1.00 - 0.50i, 1.00 - 1.50i, \ldots\}$

 $L \to L^N$ $u \to u^N$

Christopher Burgess 17th January 2025

 -2

I. Coordinate Transformation

$$
t=\tau-h(x) \qquad r=g(x) \qquad \Longrightarrow \qquad \left(\textstyle{-i\partial_{\tau}}+\left|\frac{\partial_{x}h}{\partial_{x}g}\partial_{\tau}+\frac{1}{\partial_{x}g}\partial_{x}\right|^{2}-V\right)\phi=0
$$

II. Reduction in Time

$$
\psi = \partial_\tau \phi \quad \Longrightarrow \quad \partial_\tau \psi = L_1 \phi + L_2 \psi \qquad \quad \text{spatial operators} \ \ L_1, L_2
$$

III. Eigenvalue Problem

IV.

$$
Lu = \omega u \qquad u = \begin{pmatrix} \phi \\ \psi \end{pmatrix} \qquad L = \frac{1}{i} \begin{pmatrix} 0 & 1 \\ L_1 & L_2 \end{pmatrix}
$$

v. Discretization
v. Numerical Solver

No Preferred Speed Schrödinger

Generalising Hyperboloidal Methods for Non-Relativistic Systems

Christopher Burgess 17th January 2025

Non-Relativistic Dispersion Relation

$$
\omega = -k^2 \qquad v_g \sim \frac{\mathrm{Im}(\omega)}{\mathrm{Im}(k)}
$$

Contours of Constant Amplitude

No unique coordinate transformation

$$
t = \tau - h(x) \qquad r = g(x)
$$

Christopher Burgess 17th January 2025

Parametrized Height Function

$$
h(x) = v_g^{-1}h_0(x) \qquad \frac{\Delta r}{\Delta t} \to \pm v_g
$$

: asymptotic contours of constant amplitude for modes of a given frequency

Compactification Function

 $g(x) = g_0(x)$

amplitude finite everywhere

Phase Velocity ≠ Group Velocity Schrödinger

Generalising Hyperboloidal Methods for Non-Relativistic Systems

Christopher Burgess 17th January 2025

Dispersion Relation

$$
\omega = -k^2 \qquad v_g \sim \frac{\mathrm{Im}(\omega)}{\mathrm{Im}(k)} \qquad v_p \sim
$$

$$
v_p \sim \frac{\textrm{Re}(\omega)}{\textrm{Re}(k)}
$$

Phase Singularities

$$
\mathsf{at}\,\,x=\pm 1
$$

Contours of Constant Amplitude & Phase

Christopher Burgess 17th January 2025

II. Parametrized Phase Rotation

phase rotation removes phase singularity for a given group/phase velocity mismatch

$$
\hat{\phi} = e^{-i\Delta h_0(x)}\phi
$$

amplitude & phase finite

everywhere

with $\Delta = \frac{1}{2}(v_g - v_p)$ group/phase

velocity mismatch

Christopher Burgess 17th January 2025

III. Reduction in Time

$$
\hat{\psi} = \partial_\tau \hat{\phi}
$$

$$
x^2\partial_\tau \hat{\psi} = J_1 \hat{\phi} + J_2 \hat{\psi}
$$

parametrized by v_g, v_p

Example: *Pöschl-Teller Potential*

$$
J_1 = v_g^2 \left[V - i\Delta (1 - x^2) + \Delta^2 x^2 + 2(1 - i\Delta)x(1 - x^2)\partial_x - (1 - x^2)^2 \partial_x^2 \right]
$$

\n
$$
J_2 = v_g \left[iv_g + 1 - x^2 + 2i\Delta x^2 + 2x(1 - x^2)\partial_x \right]
$$

Schrödinger

Divergence at the Turning Point

Generalising Hyperboloidal Methods for Non-Relativistic Systems

$$
x^{2} \partial_{\tau} \hat{\psi} = J_{1} \hat{\phi} + J_{2} \hat{\psi} \longrightarrow \partial_{\tau} \hat{\psi} = L_{1} \hat{\phi} + L_{2} \hat{\psi}
$$

$$
\sim \left(\frac{\partial_{x} h}{\partial_{x} g}\right)^{2}
$$

vanishes at $x = r = 0$

Christopher Burgess 17th January 2025

IV. Power Series Construction

$$
\partial_\tau \hat{\psi} = \sum_{k=0}^\infty \frac{x^k}{k!} \partial_\tau \hat{\psi}^{(k)}\big|_{x=0}
$$

Repeated differentiation of e.o.m. yields $\left.\partial_\tau\hat{\psi}^{(k)}\right|_{x=0}$

Separation of Terms

$$
x^2\partial_\tau \hat{\psi} = x^2(L_1^a \hat{\phi}_a + L_2^a \hat{\psi}_a) + J_1^b \hat{\phi}_b + J_2^b \hat{\psi}_b
$$

divisible by x^2 in divisible by x^2

$$
\hat{\psi} = \hat{\psi}_a + \hat{\psi}_b
$$

$$
\hat{\partial}_{\tau}\hat{\psi}_a = L_1^a \hat{\phi} + L_2^a \hat{\psi}
$$

$$
\partial_{\tau}\psi_a = L_1^a \phi_a + L_2^a \psi_a
$$

\n
$$
(x^2 \partial_{\tau}\hat{\psi}_b = J_1^b \hat{\phi}_b + J_2^b \hat{\psi}_b)
$$

\n
$$
(x^2 \partial_{\tau}\hat{\psi}_b = J_1^b \hat{\phi}_b + J_2^b \hat{\psi}_b)
$$

Equation of Motion

$$
\left(x^2\partial_\tau\hat{\psi}=J_1\hat{\phi}+J_2\hat{\psi}\right)\longrightarrow
$$

$$
\widehat{\partial_\tau \hat\psi} = L_1 \hat\phi + L_2 \hat\psi
$$

Christopher Burgess 17th January 2025

V. Implicit Eigenvalue Equation

$$
L_{\omega}u=\omega u
$$

$$
L=L_{\omega}\quad\text{parametrized by}\,\, v_g,v_p\sim\omega_R,\omega_I\qquad u\equiv\begin{pmatrix}\hat\phi\\ \hat\psi\end{pmatrix},\quad L\equiv i\begin{pmatrix}0&1\\ L_1&L_2\end{pmatrix}
$$

 \mathbb{I} af

Non-relativistic Dispersion Relation

$$
\omega = -\frac{1}{2}v_g\left(v_p + i\sqrt{v_g(v_g - 2v_p)}\right)
$$

uniquely defines quasinormal mode frequencies

Christopher Burgess 17th January 2025

VI. Discretization

$$
L \to L^N \quad u \to u^N
$$

Chebyshev Extremal Points

$$
x_j = \cos(j\pi/(N-1))
$$

discretization truncates power series! $\partial_{x}^{N} \rightarrow (D^{N})^{N} = 0$

solve for QNM frequencies

 $\det(L^N - \omega \mathrm{Id}) = 0$

 $Lu = \omega u \implies L^N u^N = \omega u^N$

Christopher Burgess 17th January 2025

VII. Numerical Solver

$$
\det\left(L^N - \omega \text{Id} \right) = \det\left(\omega^2 \text{Id} - i\omega L_2^N - L_1^N \right) = 0
$$

Example: *Pöschl-Teller Potential*

$$
M = \tilde{V} - \sqrt{\omega}(\sqrt{\omega} + 1)\text{Id} + 2(\sqrt{\omega} + 1)X^{N}D^{N} + (2 - (X^{N})^{2})(D^{N})^{2} + \sum_{k=0}^{N-2} \frac{(X^{N})^{k}}{(k+2)!} \Delta^{N} \left[(k+2)V_{1}(D^{N})^{k+1} + (V_{0} + (\sqrt{\omega} + 2(k+2))(\sqrt{\omega} + 1)) (D^{N})^{k+2} - (D^{N})^{k+4} \right]
$$

Christopher Burgess 17th January 2025

Non-Relativistic Compactified Hyperboloidal Method for Quasinormal Modes

Christopher Burgess 17th January 2025

Potential

$$
V = V_0 \operatorname{sech}^2(r)
$$

Christopher Burgess 17th January 2025

Potential

$$
V = V_0 \operatorname{sech}^2(r) + \epsilon \Delta V
$$

Double-Soliton Potential Schrödinger

Generalising Hyperboloidal Methods for Non-Relativistic Systems

Christopher Burgess 17th January 2025

Potential

$$
V = V_0 \left(\operatorname{sech}(r - a) + \operatorname{sech}(r + a) \right)^2
$$

Results

32 / 42

Outlook

Beyond Schrödinger

 $\left(\,\sum_{j=1}^n a_j(i\partial_t)^j-\sum_{j=1}^m b_j(-i\partial_r)^j-V\right)\phi=0$

Beyond Schrödinger

Motivations

Generalising Hyperboloidal Methods for Non-Relativistic Systems

Christopher Burgess 17th January 2025

(un)stable to weak dispersion?

Lorentz violation in quantum gravity

Hydrodynamic vortex flows[9,10]

classical quantum

Generalization of the QNM concept

Rich phenomenology New questions Possibility of new insights

 \bullet : $\epsilon = 0$ $\Theta \Box \Delta : \epsilon = 10^{-1}$

34 / 42 [9] S. Patrick, et al. Physical Review Letters 121:061101 (2018) [10] P. Švančara et al. Nature 628:66 (2024)

Status of Mode Analogies Beyond Schrödinger

Generalising Hyperboloidal Methods for Non-Relativistic Systems

Christopher Burgess 17th January 2025

Generalized Wave Equation

$$
\left(\sum_{j=1}^n a_j (i\partial_t)^j - \sum_{j=1}^m b_j (-i\partial_r)^j - V\right)\phi = 0
$$

Corresponding Mode Equation

$$
\left(\sum_{j=1}^{n} a_j \omega^j - \sum_{j=1}^{m} b_j (-i\partial_r)^j - V\right) u = 0
$$

 $\sum_{j=1}^n a_j \omega^j \leftrightarrow \omega$ $\sum_{j=1}^n a_j (i \partial_t)^j \leftrightarrow i \partial_t$

Generalized Schrödinger Equation

$$
\left(i\partial_t - \sum_{j=1}^m b_j(-i\partial_r)^j - V\right)\phi = 0
$$

Corresponding Mode Equation

$$
\left(\omega - \sum_{j=1}^{m} b_j(-i\partial_r)^j - V\right)u = 0
$$

$$
35/42
$$

Generalized QNM Problem Statement Beyond Schrödinger

Generalising Hyperboloidal Methods for Non-Relativistic Systems

Christopher Burgess 17th January 2025

> **outgoing modes**

WW>

 $j > 1$

Generalized Schrödinger Equation

$$
\left(i\partial_t - \sum_{j=1}^m b_j(-i\partial_r)^j - V\right)\phi = 0
$$

Mode Equation

$$
\left(\omega - \sum_{j=1}^{m} b_j(-i\partial_r)^j - V\right)u = 0 \quad \text{with} \quad \phi = ue^{-i\omega t}
$$

outgoing

 $j<1$

Boundary Conditions

modes $\phi \sim e^{ikr - i\omega t}$ **as** $r \to \pm \infty$ with $sgn(j) \to \pm 1$ \longleftarrow

Generalized Continuity Equation

$$
\frac{\partial_t(\psi\psi^*)}{\partial \text{density}} + \partial_x \left[\sum_{j=1}^m b_j \sum_{k=0}^{j-1} \left((-i\partial_x)^k \psi \right) \left((i\partial_x)^{j-1-k} \psi^* \right) \right] = 0
$$

Generalising Hyperboloidal Methods for Non-Relativistic Systems

Generalising Hyperboloidal Methods for Non-Relativistic Systems

Generalising Hyperboloidal Methods for Non-Relativistic Systems

Generalising Hyperboloidal Methods for Non-Relativistic Systems

Box Potentials Beyond Schrödinger

Generalising Hyperboloidal Methods for Non-Relativistic Systems

Outlook

Summary

Generalizing Hyperboloidal Methods for Non-Relativistic Systems 17th January 2025 Summary

Christopher Burgess

Schrödinger QNMs

- **Generalization of QNM concept to the Schrödinger equation**
- **Direct application of hyperboloidal method to Schrödinger QNMs**
- **First steps to hyperboloidal method for QNMs of higher-order equations**

Generalized Wave Equation QNMs

- **Generalization of QNM concept to higher-order equations**
- **New phenomenology in QNMs of higher-order equations**

St Andrews Team

1 Pavlos Manousiadis 2 Andleeb Zahra 3 Christopher Burgess 4 Sang-shin Baak Friedrich König 1 5

Relevant papers

C. Burgess, F. Koenig. Frontiers in Physics 12:1457543 (2024) C. Burgess, et al. Physical Review Letters 132:053802 (2024)