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Introduction

Inspiral Merger Ringdown

Figure: Illustration of a pair of coalescing black holes (credit : (Top) Kip Thorne; (Bottom) B. P.
Abbott et al; adapted by APS/Carin Cain)

Ringdown
Sum of damped oscillators

Uy (t) ~ ZAevmvneiwe,m,nt
n
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Introduction

Introduction : the conservative case

The conservative case

Example of system : guitar string struck
Consider the linear equation

{&u =iHu
u(t = va) = UO(x)

where H is self-adjoint and the eigenfunctions ©,, form an orthonormal basis of

the Hilbert space. The solution can be written as a convergent sum (convergent
series) over the harmonics

o0
u(z,t) = Z O ()€™t
n=0

where

apn, = (O, Uo) e, Ho,, = w, 0y,
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Introduction

Non-self adjointness

(In)Completeness

In the self-adjoint (normal) case, any oscillation is a superposition of normal modes. In the non-self adjoint (non-normal) case,
we don't have completeness for generic potentials'.

Spectral decomposition

Spectral decomposition and excitation coefficients in the Schwarzschild case'l. Need for a systematic approach.

Keldysh expansion using the adjoint of L

Keldysh expansion from L and LT introduced in previous work,

Lv, = wpvn

+ _
L'wy = wpwy

"Warnick, (In)completeness of Quasinormal Modes, Acta Physica Polonica B
"Ansorg, Macedo, Spectral decomposition of black-hole perturbations on
hyperboloidal slices, Phys. Rev. D 93, 124016
i Gasperin, Jaramillo, Energy scales and black hole pseudospectra: the structural role
of the scalar product, Class. Quantum Grav. 39 115010
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Introduction

Introduction : quasinormal modes definitions and BH
perturbation theory

Quasi-normal modes (QNMs)

Heuristics: Resonant response under linear perturbation characterized by
complex frequencies. QNMs probe the background spacetime geometry
Lax-Phillips theory: QNMs as poles of the resolvent

Perturbation theory on Schwarzschild black hole

Scalar, electromagnetic and gravitational perturbations reduce to the
following wave equation in the tortoise coordinates

2 2
((gt? - (922 + W(T*)> ¢em = 0 + outgoing boundary conditions

where V; depends on the type of perturbation (spin s = 0,1 or 2).
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Introduction

Introduction : quasinormal modes definitions and BH
perturbation theory

Quasi-normal modes (QNMs)

Heuristics: Resonant response under linear perturbation characterized by
complex frequencies. QNMs probe the background spacetime geometry
Lax-Phillips theory: QNMs as poles of the resolvent

Perturbation theory on Schwarzschild black hole

Scalar, electromagnetic and gravitational perturbations reduce to the
following wave equation in the tortoise coordinates

2 2
(;2 = 88:(}2 + )\QVg(m)> ¢em = 0 + outgoing boundary conditions
where V; depends on the type of perturbation (spin s = 0,1 or 2).
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Compactified hyperboloidal approach

Compactified hyperboloidal approach

Compactified hyperboloidal approach

7 = ru/X % = g(z)

= Killing vector

" 1
t = at = 85 = XaT
QNMs as eigenvalues

QNMs as eigenvalues of a non-self adjoint

operator
Lv, = wnvn
i where
) I 1 0 1
lllustrations of hyperboloidal slicings' = =
Y € (2 L1 LQ

IVPhysRevX.ll.O?&lOOB, Jaramillo, Macedo, Al Sheikh and hyperboloid.al
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Compactified hyperboloidal approach

Poschl-Teller : a toy model (part 1)

Poschl-Teller (1/2)

0?2 0?2
<8t2 ~ 52 + V(ac)) ¢ =0, V(Z) = Vp sech?(Z)

The following change of variable¥ defines a compactified hyperboloidal
foliation :

{7‘ =t — In(cosh Z)

z = tanh~}(Z)

t, T € Ryz € [-1,1]

VAI Sheikh,Jaramillo,Macedo;2004.06434,Al Sheikh PhD,Bizoni,Chmaj,Mach;2002.01770
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Compactified hyperboloidal approach

Poschl-Teller : a toy model (part 2)

Poschl-Teller (2/2)

First order reduction : u(z,7) = (i) with ¢ := 0, ¢,

O (i) B ( 2,((1 —mg))aw) —Vo —<2xalx+1> ) (i)

Differential equation :

O-u = iLu, u(z, ™ =0) = up(x)

Spectral problem : Lv, = w,vy,

Analytical Poschl-Teller QNMs

w B . 1
on(x) = Gegenbauer polynomials ol "+é)(x), Wy = :I:? +1 <n I 2)
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Compactified hyperboloidal approach

Poschl-Teller quasi-normal frequencies

Eigenvalues of L
10

X X
X X
sl
X X
- X X
S 6l
o
- X X
2
©
[=4
S X X
g
- X X
X X
2k
X X
X X
0 L L L )
-2 -1 0 1 2
real part

Figure: View of the Pdschl-Teller QNMs frequencies in the complex plane
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Compactified hyperboloidal approach

Compactified hyperboloidal approach

Compactified hyperboloidal slicing

{

First order reduction
We define the field ¢ := 9, ¢, the linear problem becomes

(3= (215) ©)

Outgoing boundary conditions

(S

— h(z)

::;(ZL') g: [avb} - [700’4’00]

8|

x—g(x) =7

@ Geometric interpretation : outgoing null cones

@ Analytic interpretation : singular Sturm-Liouville operator, the boundary
conditions are built-in as regularity conditions
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Compactified hyperboloidal approach

Compactified hyperboloidal approach

()~ (1) ()

il
All the space derivatives are contained within the matrix.

L=~ @0~ o0)

- (29(2)0s +07(2))

where
g @2 =W (@)?

h lg’ ()]

(2) = — 1
P = @)

q(x) = |g' ()| Ve ()
' ()
lg’ ()]
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Compactified hyperboloidal approach

Scalar product and non-selfadjointness

The energy scalar product is related to the energy-momentum tensor of a
complex scalar field on a Minkowski spacetime with a potential V.

b
< (ii) g (iz) > - % / P1be + p(2)0e10x02 + ()P Pad
E a

We use this to justify that Lo is a dissipative term and is responsible for
non-self adjointness

1
L'=L+-
2

Instability of the QNMs

The eigenvalues can be greatly perturbed upon a small perturbation of the
potential
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Keldysh resonant expansion

Resolvent

Oru(z, ) =iLlu(z, T)

A Laplace transform yields,
(L — w)u(z,w) = iup(z)
Acting with the resolvent Ry (w) = (L — wl)~! on both sides we get

u(z,w) = i(L — wl) tug(z)
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Keldysh resonant expansion

Keldysh's expansion of the resolvent
Consider the application

F:Q— L(H,K)
wr— F(w)

Assume F'(w) is a Fredholm operator. The transpose application of F' is
F(w)': K* — H*
The spectral problems are rewritten
F(wp)v, =0, F(wn)ton, =0, v, € H,a, € K*

Keldysh's theorem gives an expansion of the resolvent application“'.

Fw) = Z Mvn—i-H(w) with <&n,dF(wn)(vn)> =1.

w—w dw
wnEQO n

V'Beyn,Latushkin,Rottmann-Matthes;1210.3952
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Keldysh resonant expansion

Keldysh's resonant expansion for non-generalized

eigenvalue problems

We use the recipe with F(w) = L — wl, the spectral problems are :
(L —w, v, =0, (L'—w,ay, =0, v, €H,a, €H"

The resolvent of L is constructed in a bounded domain €2 can be written

Rr(w)=(L—-wl)™! = Z (G, ) v, + H(w)

w — W
WnEQO n

On the other hand, the Laplace transform of the differential equation yields
(L — w)u(z,w) = iup(z)

The asymptotic resonant expansion is then found by multiplication by the
resolvent and inverse Laplace transform

u(T,x) ~ Z(an, o) v (z)e™n T, with (o, v,) =1

n
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Keldysh resonant expansion

Asymptotic resonant expansion

Bound of the error of the Keldysh expansion

Given a bounded domain @ in C and R = max,ecq Im{w}, we have

u(t,x) = Z (Otn, UV ()T + ER(T;ug)(z)

Im{wn }<R
and
IER (75 u0)l| e < [luoll5CR(L)e™
Notation
Ay (x) = (o, uo) vp (), with (a,,v,) =1
———
(see Vil for )

AZO = An(w)‘xznull infinity
W and Macedo 10.1103/PhysRevD.93.124016
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Keldysh resonant expansion

Asymptotic resonant expansion

Error for 1/2 < R < 3/2

tm(e) Summing over only the fundamental mode, we have
wrg 125 the error
“ w Ei(z,7) =ulz,7) — Z An(z)e™nT
777777 '”7””015””.”175;% n<Im{w;:}
=u(x,7) — Ag (2)e"0 T — Ag (x)e™0 T
wo Ql 05 Jwo
- T Bound

(|1 (75 uo) ||

< Cy(L)e 57
fwls < Cr)e
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Cases of study and simulations

Cases of study

Poschl-Teller (toy model)
€ [-1,1]
{h(x) =log(1 — 2?)
g(x) = arctanh(x)
Schwarzschild
o €[0,1], A =4M.

{h(o) =1 (logo +1log(1 — o) — 1)
1

g(o) =1 (% +1log(l — o) —Ino)
1 9 2
L, = m [80 (20' (1- 0)(‘30) —20(l+1)—(1-s )U]
1 2
Ly, = mp(l —20%)0, — 40]
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Cases of study and simulations

Cases of study

Cases F(r) I potential for s = 0, 1 or 2 0dd (axial perturbations) I potential for s = 2 even (polar perturbations)
Poschl-Teller (toy model) Vp sech? (';)
y e(et1 y OM3 4362 Mr2 42 (14c)rd+9M2
Schwarzschild 1-2M o) (Lg—’ +a- s'-’)?_“) JOF +3e"Mr_ e (14o)r”+0M cr
G (8M+er)
2 _ T 9M3 182 M r2 1 c2 3302 (3er—Ar3
et desner || 1= 22— A2 | gy [HEFD) 4 1 - a2) (2 — 22| | 22D OMIABSEMTbe (bl bOME (Ser=Ar®)

Table 1 . Expressions for the potential in the three cases we cover. In these expressions, the
cosmological constant may be positive or negative. We denote ¢ = %

Schwarzschild-de Sitter

p vanish linearly at the event horizon and at the cosmological horizon, its
expression depends on the surface gravity""

Schwarzschild-Anti de Sitter

Reflexive (Dirichlet) boundary conditions imposed at the AdS boundary : acts like
a box that confines the field. There are only dissipations at the event horizon™

viiSarkar,Rahman and Chakraborty 10.1103/PhysRevD.108.104002; Destounis,
Boyanov and Macedo 10.1103/PhysRevD.109.044023
“Aredn, Farifia and Landsteiner 10.1007/JHEP12(2023)187;

Boyanov,Cardoso, Destounis and Jaramillo 10.1103/PhysRevD.109.064068
_ Quasi-normal mode expansion of black hole perturbation: a hyperboloidal Keldysh approach 23 /55




Cases of study and simulations

Numerical methods

The discretized counterpart of ¢ is a vector
with NV + 1 entries:

fo—0—0—0o—¢—o0o—o—oop ¢1
- 0 +1 b
X s ¢ T:) = ¢
Figure: Chebyshev-Lobatto grid, ¢' (5) J
ue N
zj = cos (3) o

Numerical instability: we work with
arbitrary precision numerics, typically L : (2N +2) x (2N + 2) entries (matrix)

107500 u: (2N + 2) entries (column vector)
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y and simulations

Time evolutions

Sector Parameter
Chebyshev-Lobatto grid size N
arbitrary decimal precision precision
dt increment
ODE/DAE solver (numerical time evolution) tolerance
algorithm
Note. — The decimal precision controls the arithmetic precision of real or complex

floating numbers. The solver’s dt is fixed to 10~7. The precision of the ODE solver
is controlled by a parameter named “tolerance”. Furthermore, the solver requires an
algorithm that corresponds to the discretization scheme of the time derivative. we chose to
exploit Julia’s automatic stiffness detection feature and we figured out the best choice in
terms of accuracy and execution time is probably AutoVern9(Rodas5P()).

Figure: Parameters involved in the simulations
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and simulations

Time evolutions

075 B : B = = 0 i W w0 W

(a) Poschl-Teller (b) Schwarzschild-dS

Figure: Initial data

(c) Schwarzschild (d) Schwarzschild-AdS

Figure: Waveforms at future null infinity
(event horizon for the AdS case)
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Spectra

Figure: Spectra of the cases of study (event horizon for the AdS case)
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tudy and simulations

XXX XK XXX XXX XK XXKXKK

X

X<
000N IRHIXXHNINHIXNKNNK

%

Xx 2005000000000

X

&‘x 050K XX K

e 0
Re(w

(a) Poschl-Teller

S HOHOOKX XXX XX XXX X
XX XXX XXX XXX XXX X

g o5
Re(A,)

(b) Schwarzschild-dS

(c) Schwarzschild

Re( e

(d) Schwarzschild-AdS
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tudy and simulat

Spectra

x x x x
30
200
100
* »
‘"-.,a-p"‘ "in,_‘“
o o - b
s B EX 00 05 10 1s 15 10 05 00 05 10 15
Re(Aw,) Re(\,)

(a) Péschl-Teller

s CIRS
- x x
_» N
£ " L]
10 .
» * .
et ” 6 i s
15 1o Y o5 1o 15
(c) Schwarzschild (d) Schwarzschild-AdS

Figure: Spectra of the cases of study for different gridsizes N.
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Cases of study and simulations

Comparing the time and the spectral domain analysis

log 6(z = 1,7)

ol = 0.

(c) Schwarzschild (d) Schwarzschild-AdS

Figure: We compare the ODE solution and the Keldysh QNM expansion at future
null infinity (event horizon for the AdS case).
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S 1)

p——

log |

B 10 1 20

(a) Poschl-Teller

(g - 1,7)

b,
(01,1 —¢

10 20 30 w0

(b) Schwarzschild-dS

o B 10 15 2 2

(c) Schwarzschild

Figure: Difference between the ODE solution and the Keldysh QNM expansion at

future null infinity.

2 0 ® 0

(d) Schwarzschild-AdS
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of study and simulations

Coefficients of the timeseries at future null infinity

log | Ao

(a) Poschl-Teller (b) Schwarzschild-dS

(c) Schwarzschild (d) Schwarzschild-AdS

Figure: Log plot of the modulus of the coefficients A42°.
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Relhe)

(b) Eigenvalue plot

g (1)

(c) Waveform ¢(7, o) |o=0 on a log-log plot

Figure: Separating branch cut and QNMs in the Schwarzschild case.
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- A

h cut N - 600
\ ~— linear fit, slope

3003

YT = : "ﬂ“’ = : ¥ \
| I B ’ " log y(r) | ) ;
) . o Figure: The bigger N, the longer the
Figure: Polynomial tails in the tail. (¢ =2 in this figure).

Schwarzschild case.
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Cases of study and simulations

Dynamics from the (exponentiated) evolution operator

Finite rank case (matrix case)

We assume the matrix L can be diagonalized: L = PDP~! where

D = diag(w,ws, ..., WaN+1, W2N+2)
P=(uv ‘ (2 ‘ ‘ VaN41 ‘ Vang2 )

(P_l)t :( @ ‘ @4 ‘ ‘ Q2N +1 ‘ QioN+2 )

@ v, are eigenvectors of L

@ «, are eigenvectors of L such that {a,,v,) =1
The "formal” solution of 8,u = iLu is e*L™
all the eigenvalues,

U, it corresponds to the sum over

e (atn, ug)
. _ 0)
PezDTP 1’U,0 — E Lezwnrvn

n=1 <an; vn)
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simulations

b modes — 1
nlb modes - 2
nlb modes - 10
Iy nb modes - 40
\ nb modes - 80
\ ——— nb modes - 160
025 \ ——— nb modes - 200
whole sum (waveform)

-0.50

Figure: We show we recover the early times of the waveform by adding enough
overtones. The panel on the right is a zoom.

Convergence of the series 7 We can describe the waveform using 310 modes with
a maximum error =~ 107%°, this begs the question whether the series is

convergent or not. What meaning do we give to the word " convergent” here 7
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Cases of study and simulations

Role of overtones : Poschl-Teller

u(r,@) = Y An(2)e™"T + Er(iuo)(@), | Er(riuo)lle < luollsCr(L)e™ ™

Imwny,<R

We want to assess the convergence of the sum as a series. does
Ve > 0,3M € N,Vn > M, || En(T;u0)|| g < €7

—We plot || En(7;u0)|| 5 as a function of n (the number of QNMs in the truncated

S

sum)

Figure: Norm of the error as we add more terms to the QNM expansion. A color

corresponds to a time 7.
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Pseudospectra and regularity

Pseudospectrum

Given a perturbation dL of L of norm g, what is the set of complex

numbers A which are actual eigenvalues of some perturbed operator
L+4d0L7

Perturbative approach
o®(L) ={\ e C,35L € M,(C),||0L|| <e: A€ o(L+dL)}
Resolvent norm approach

o*(L) = (A € C: Rl = ||\ = D)7 > 1/}
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Pseudospectra and regularity

Pseudospectrum in the self-adjoint case (Poschl-Teller with
Ly =0)

The colors correspond to
logyg €.

The contour lines form
circles centered on the

imaginary part

eigenvalues and horizon- - =]
tal lines far away from the -
eigenvalues. -

o
real part

Figure: Pseudospectrum in the self adjoint case.
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Pseudospectrum (Poschl-Teller)

The contour lines are open
and the eigenvalue can mi-
grate very far from the eigen-
values of the non perturbed
operator.

Issue : The (numerical) energy 2
pseudospectrum doesn’t con-

verge with N

Tm(Aw,)

Figure: Poschl-Teller energy pseudospectrum.
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Pseudospectra an

HP—pseudospectrum

H?—QNMs

HP-QNMs are eigenfunctions of the
HP-regular operator

L,: H? x H”™' — H? x H?™!
(¢,9) = L(9, ¥)

they constitute a finite set below

Im(A) < a+ & (p — 3) with & the surface

2
gravity and some constant a. QNMs
contained in the first p bands of width  are
required to have H? regularity. We

introduce a norm that make the

P S AN NN AN RNRRNRRRE]

Figure: H*—pseudospectrum.

Poschl-Teller pseudospectrum converge in b 2 p 8j¢
bands and increases the regularity of the H < ) = x
QNMs in these bands.* P HP =0 &%w 5

*Warnick;1306.5760, Boyanov,Cardoso,Destounis,Jaramillo;2312.11998
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H?3-pseudospectra (Poschl-Teller case)

-10 =5

Figure: H8-pseudospectrum.
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Convergence test of the HP-pseudospectrum

1

—4-3-2-1

4

nIm{z}

0it -
9it -
8it
Tit .
6it .
5it .
4it

it
24T
1it

-1

2

3

4

I Re){z}

Figure: We pick some points in the

complex plane

Figure: H®—pseudospectrum

=30
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ctra and

ilarity

Convergence

of the H'—pseudospectrum

N —
—
-1 I
—_
—_—
—_
. ——
T
= i =t
: % *—77———7777,,,)(,
—sel
g T
N —x
-30
0051004999
00541.25585,
o oosizzen
00843 36665
I 005144720
034557777
I 00sie a8
00347 78885
0031889444,
100,

Figure: Norm of the resolvent for the H' norm and different z in the complex

plane.
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An approach to the convergence of the asymptotic series
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An approach to the convergence of the asymptotic series

An approach to the convergence of the asymptotic series
(motivation)

Error bound (theorem)

| En (75 u0) |l < Ot/
l[uoll

n is the number of modes in the truncated expansion
C,, doesn't depend on wug

Norm of a matrix A with respect to the scalar product (.,.)q

|| Auo||
[A[lg = max <
w uollg
Can we estimate C,, without fixing any particular ug ?

Idea: Get rid of ug by transforming E,, into a matrix and then compute its
norm.

_ Quasi-normal mode expansion of black hole perturbation: a hyperboloidal Keldysh approach 46 / 55



An approach to the convergence of the asymptotic series

An approach to the convergence of the asymptotic series

Im(w)
los o2
fw
5 e
§>0
R
©
“rg Sty o0
3 1 Re(w)

Ei(T)uo = u(r) — Z Ape’nT
wn €921
— Pdlag (eiw(yr’ eiwowr7 eier’ eiw1+7" ey )P—luo

— Pdiag (™0 7 e 7 0,0, ..., )P  ug

= Pdiag (0,0,e™ 7,7 . )P tug
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An approach to the cor ence of the asymptotic series

An approach to the convergence of the asymptotic series

We compute the norm of the matrix

E (1) = Pdiag (0,0, ™ 7 ™17 . )P!

We traded a depency on ug for a depency on 7. We chose 7 = 5 for the next two

figures.
The norm || E,,(7)|| 7» converges as the gridsize N increases if n < p.

1.
4.5 * 0
4.4 0.8
x
4.3 .
= _=06], % + % 3
=42 <)
g a1 X _é”: 04
4.0 x
0.2
3.9
X 0.0
50 100 150 200 250 50 100 150 200 250
gridsize N gridsize N

Figure: log,, of the energy norm of Figure: log,, of the H'®-norm of the
the error E1 (T = 5) error E1(1 = 5)
N
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An approach to the convergence of the asymptotic series

An approach to the convergence of the asymptotic series

Define
En(r) = e ("T12TE, (1)
and
Cp, = max En(T)H (note: this is called C;.° in the appendix)
T<Tc HP
3.0 2;;2&: XX>XAXAXA
c K

Figure: log,, of C,, for different H? norms
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Unique expansion at null infinity

Keldysh's approach generalizes previous QNM expansion schemes
(higher dimensions, tails, ...)

Agnostic nature of the Keldysh QNM expansion : the expansion is
independant of a scalar product ("dual pairing” (.,.) notion instead)

Polynomial tails are recovered and follow the Price law
Role of overtones at early times of the waveforms
HP-pseudospectra converge according to Warnick’s criterion

An insight into the role of regularity for the convergence of the
asymptotic expansion

Dynamics from the evolution operator amounts to Keldysh over all
the eigenvalues of the matrix
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Conclusions

Thanks for your attention !
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