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Wanted: Gravitational Waves at I +

We are concerned with the first principles computation of
gravitational waves at future null infinity.

State-of-the-art:

▶ Extrapolation.

▶ Characteristic-Extraction.

Wish-list:

▶ Well-posedness. Nice equations
and solutions.

▶ Extension of strong-field setup.

▶ Proveably good numerics.
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Timelike outer boundary. Vañó-Viñuales.



The weak-field

The wavezone is weak, so how is it a problem? Infinity is really big.

Fundamental ingredients:

▶ Compactify whilst resolving
outgoing waves. Introduces
blow-up quantities.

▶ Asymptotic Flatness: Metric
decays near infinity.

Key to any computational strategy is
the management of this competition.

Examples: CEFES. CCE/CCM.
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CCM Cartoon. Vañó-Viñuales. 2015.
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Hyperboloidal foliation. Vañó-Viñuales.



Compactification: dual foliation formalism

General strategy: take good formulation of GR in tensor basis
of Xµ, but work with independent variables xµ = (t, x i ).

▶ Given hyperbolic system

∂Tu = Ap∂pu+ S.

▶ Change coordinates:

T = t + H(R), R = R(r), θA = θA .

▶ Adjust equations via Jacobian,
rescale variables.

Illustration of DF setup.

Decay has to offset compactification.



The GBU(F)-model

Consider a toy model for GR in GHG:

□g = 0, □b ≃ 1
R ∂T f + (∂Tg)

2, □u ≃ 2
R ∂Tu,

with free choice of the equation of motion for f .

▶ Interesting case I: f = 0. Gives b ∼ log(R)/R

▶ Interesting case II: □f = 2
R ∂T f + 2(∂Tg)

2. Gives b ∼ 1/R

Analogy to GR?



Hyperboloidal numerics for GBU(F)-model

Numerical sanity check:

▶ ‘Radiation fields’ evolved.

▶ Implemented in spherical FD
code & NRPy+.

▶ Spectral numerics desirable
too; be patient! 0.0 0.2 0.4 0.6 0.8 1.0
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Spherical GR I

Can we capture stratification without extra structure? Defining
suitable null vectors σ and σ, the field equations take the form:

−DσDσR̊ + 1
κDσR̊(DσC+ − DσC+) = 4πR̊Tσσ ,

−DσDσR̊ + 1
κDσR̊(DσC− − DσC−) = 4πR̊Tσσ ,

plus

1
222δ − Da

[
eδ

κ2
(
σaDσC− − σaDσC+

)]
+

2

R̊3
MMS

+
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κ3
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]
=
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R̊2
+ 8π
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κ
Tσσ ,

22R̊
2 − 2 + 16π

eδ

κ
R̊2Tσσ = 0 ,

... which is surprisingly pretty!



Spherical GR II

Imposing GHG gives

Dσ

(
2
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2DσC+

)
+ R̊Dσ

(
R̊F σ
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− 1
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Dσ

(
2
κ R̊

2DσC−

)
− R̊Dσ

(
R̊F σ

)
− 1

κDσR̊
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for the speeds, and
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=
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for the det variables... which is still surprisingly pretty!



Hyperboloidal numerics for spherical GR I

Numerical work with spherical GR, basic dynamics:

▶ Constraint violating ID.

▶ Small data disperses
(reflections negligible).

▶ Explodes without gauge
driver.



Hyperboloidal numerics for spherical GR II

Numerical work with spherical GR:

▶ Constraint-solved data.

▶ Eikonal/Height function
comparable.

▶ Collapse, mass-loss, QNMs,
tails under control.
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Hyperboloidal numerics for spherical GR II

Numerical work with spherical GR:

▶ Constraint-solved data.

▶ Eikonal/Height function
comparable.

▶ Collapse, mass-loss, QNMs,
tails under control.
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Hyperboloidal numerics for spherical GR II

Numerical work with spherical GR:

▶ Constraint-solved data.

▶ Eikonal/Height function
comparable.

▶ Collapse, mass-loss, QNMs,
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Conclusions

Motivated by need for GWs at null infinity we are developing a
method that employs compactified hyperboloids in NR.
Features/status:

▶ Dual-foliation formalism and exploitation of null-structure.

▶ Careful choice of gauge and constraint addition to suppress
spurious radiation fields (and logs).

▶ Spherical GR under control.

Stay tuned for 3d GR numerics!
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