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Talk outline:

Hyperboloidal (and null) formulation of the QNM problem.

Norm, QNM instability, and pseudospectrum.

(Non-)convergence of the pseudospectrum.

Applications to dynamical stability analysis (of exotic compact
objects).
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Geometries and perturbations

We will be dealing with (electro-)vacuum geometries in spherical symmetry, with
or without Λ,

ds2 = −f (r)dt2 +
1

f (r)
dr2 + r2dΩ2, (1)

with f (r) the redshift function. E.g. for Schwarzschild-Anti-de Sitter (SAdS),

f (r) = 1− 2M

r
+

r2

R2
.

Linear perturbations on this spacetime follow

−∂ttψ + ∂r∗r∗ψ − V (r)ψ = 0, (2)

where the form of V (r) depends on the nature of the perturbation and the
angular multipole, and dr∗ = dr/f (r).
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QNM boundary conditions

QNMs are the (analytic) solutions which satisfy appropriate boundary conditions,
such as:

Ingoing condition at black hole (BH) horizons,

(ψ,t − ψ,r∗)|r∗→−∞ = 0. (3)

Outgoing condition at infinity or at cosmological horizon,

(ψ,t + ψ,r∗)|r∗→∞ = 0. (4)

On timelike boundaries, such as the AdS asymptotic region or the surface of
some exotic compact object (ECO) models, e.g. a Dirichlet condition,

ψ|boundary = 0. (5)
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Hyperboloidal slicing
- The solutions at r∗ → ±∞ are the modes e iω(t∓r∗).

- On a t = const. slice, if they are decaying in time (Im(ω) > 0), then the
modes diverge in their respective limits of r∗ (at the horizon bifurcation
surface and at spacelike infinity).

- The solutions are only regular in r∗ at the boundaries if t → ∞ in a
compensatory manner.

Switch to hyperboloidal time τ , and
compactified radius χ:

t = τ − h(χ),

r∗ = g(χ),

such that h ∼
r∗→−∞

g , and h ∼
r∗→∞

−g .

When possible, τ can also be an ingoing
(h = g) or outgoing (h = −g) null
coordinate.

From Jaramillo et al., Phys. Rev. X 11, 031003 (2021).
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QNMs as eigenvalue problems

- In the hyperboloidal coordinate system
{τ, χ}, after an order-reduction in time
and a Fourier transform, the wave eq.
becomes an eigenvalue problem,

L

(
ψ
ϕ

)
= ω

(
ψ
ϕ

)
,

with ϕ = ∂τψ, and

L =
1

i

(
0 1

L1(χ, ∂χ) L2(χ, ∂χ)

)
.

- In a null coordinate system, after a
Fourier transform, the equation becomes
a generalised eigenvalue problem,

Mψ = ωBψ

with M = M(χ, ∂χ) and B = B(χ, ∂χ).
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QNMs: numerical computation

After a discretisation in χ on a Chebyshev grid and a pseudospectral
approximation to ∂χ, we can solve the problem numerically.
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QNM frequency spectrum for a scalar field, ℓ = 2,
Schwarzchild-Anti-de Sitter (SAdS) with rh = RAdS .
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Perturbations to L

If we perturb L, the eigenvalues change.1

L → L̃ = L+ δL,

Size of δL: energy norm,2 coming from the product

⟨u1, u2⟩E =
1

2

∫ b

a

[
w(χ)ϕ̄1ϕ2 + p(χ)∂χψ̄1∂χψ2 + q(χ)ψ̄1ψ2

]
dχ.

For ∥δL∥ = ϵ, if the migration of any of the QNMs |ω̃n − ωn| is greater than ϵ,
then the operator L is spectrally unstable in this norm. This occurs with BH
QNMs.

We consider a “physical” perturbation one which affects only the potential V
(without changing its boundary behaviour).

1Jaramillo, Panosso Macedo & Al Sheikh, Phys. Rev. X 11, 031003 (2021).
2Gasperin & Jaramillo, Class. Quantum Grav. 39 115010 (2022).
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QNM instability
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Scalar field, ℓ = 2, Schwarzchild-Anti-de Sitter (SAdS) with rh = RAdS .
Spectrum before and after a perturbation δṼ = ε sin(2πkχ).

Nollert-Price branches [Nollert & Price, J. Math. Phys. 40, 980–1010 (1999)]
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Pseudospectrum

The QNM spectrum is given by

σ(L) = {ω ∈ C : |L− ωI| = 0}. (6)

The ϵ-pseudospectrum is a region in C in which all points are no further than ϵ
from being eigenvalues in the following sense:

σϵ(L) = {λ ∈ C : ∥RL(λ)∥ = ∥(L− λI)−1∥ > 1/ϵ}, (7)

where RL(λ) is called the resolvent.

When this measure of closeness coincides with actual distance in C, the
operator is spectrally stable (and the ϵ-pseudospectral regions form
concentric discs around each point of the spectrum).

Conversely, when the ϵ-pseudospectrum contains points further than a
distance ϵ away from the closest point of the spectrum, the operator is
spectrally unstable in the chosen norm.
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Pseudospectrum
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Pseudospectrum of the same case as above, calculated with ∥RL(λ)∥.
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Pseudospectrum and operator perturbations

An equivalent definition of the ϵ-pseudospectrum is

σϵ(L) = {λ ∈ C,∃δL, ∥δL∥ < ϵ : λ ∈ σ(L+ δL)}, (8)

where δL is any perturbation to L. After a perturbation of magnitude ϵ, the
modes can end up anywhere inside the ϵ-pseudospectral region.
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Pseudospectrum and operator perturbations
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Pseudospectrum calculated with ∥RL(λ)∥, and perturbed modes after δL.
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Pseudospectrum and norm

Both definitions depend on the choice of norm.

In mathematical problems, when faced with spectral instability in one
norm, one usually looks for another in which stability is recovered.

In physics, however, the choice of “large” and “small” must be
grounded in a measurable quantity, such as energy.
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(Non-)convergence of the pseudospectrum

This would be the full picture, but there is an issue with numerical convergence...

2.0 2.2 2.4 2.6 2.8
-1.6

-1.5

-1.4

-1.3

-1.2

Log10[N]

L
og
10
(σ

ϵ
)

Energy norm of (inverse of) resolvent
operator at λ = 2 + 0.5i (for same SAdS
problem as above) as function of numerical
resolution N. Similar whenever Im(λ) > 0.
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Energy norm of (inverse of) resolvent
operator at λ = 2− 0.5i (for same SAdS
problem as above) as function of numerical
resolution N. Similar whenever Im(λ) < 0.
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Qualitative and quantitative aspects

Observations:

The spectral instability under “small” perturbations is a robust result

The pseudospectrum at a finite numerical resolution N captures the
qualitative behaviour of the spectral instability

However, the ϵ values assigned to each contour line change with N

Possible reasons for non-convergence:

The operator cannot be numerically approximated by finite-rank matrices

The points with non-convergence are actually part of the spectrum...?
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Way forward

Analyse convergence with the
numerical gridpoint number N.

Understand the reason behind
non-convergence.

Determine when and how
quantitative results can be
obtained.

[e.g. Boyanov, Cardoso, Destounis,
Jaramillo, Panosso-Macedo:
arXiv:2312.11998]

Analyse qualitative aspects and
implications of the non-convergent
result.

Obtain quantitative results from
the Im(λ) < 0 region (early-time
non-modal dynamical effects,
nonlinear instabilities).

[e.g. Boyanov, Cardoso, Destounis,
Jaramillo, Panosso-Macedo: Phys.Rev.D
107 (2023) 6, 064012]
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Pseudospectrum convergence in Schwarzschild-AdS
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AdS QNMs: a precise definition

In a Sobolev functional space Hk , the spectrum of L (for the SAdS BH) is
only discrete in the region3

Im(λ) < a+ κ(k − 1

2
), (9)

where κ is the surface gravity of the BH horizon, and a is a constant.

Above this band, all points are part of the spectrum.

Because part of the spectrum is always continuous, L in Hk is never a
compact operator.

L might not be well approximated by finite-rank matrices.

Still, improved convergence behaviour might be found in some region of C if
we impose higher regularity.

3C. Warnick, Commun. Math. Phys. 333, 959–1035 (2015).
Valentin Boyanov Pseudospectrum of BHs 15/03/24 20 / 34



Hk norms and convergence

In practice, the way to ensure the function space is Hk is through the norm,
increasing the number of derivatives,

⟨u1, u2⟩k =
1

2

∫ b

a

[
w(χ)ϕ̄1ϕ2 + p(χ)∂χψ̄1∂χψ2 + q(χ)ψ̄1ψ2 + ∂kχψ̄1∂

k
χψ2

]
dχ.

Using the null slicing, we did obtain such a result (the hyperboloidal slicing
lead to some complications).
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Hk norms and convergence

The result is as shown below:
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Convergence example
λ = 2 + 1.5i , norm H1
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λ = 2 + 3i , norm H2
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Summary

The pseudospectrum, as defined by the level sets of the norm of the
resolvent operator, does not always converge numerically.

There appears to be a strong relation between its numerical
convergence and the degree of regularity encoded in the norm.

This issue is under active exploration, both for AdS BHs, as well as
for other QNM problems.
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Exotic compact object dynamical stability analysis
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Pseudospectrum: other uses

Quantifying spectral instability is not the only use of the pseudospectrum

It also contains information on transient non-modal behaviour in time
domain evolution, and pseudo-resonant amplification of sources

In this way, it can be used as a tool to gauge the dynamical instability of
systems when it is not directly evident in the spectrum

As we will see, this information is obtained from the region at and below the
real axis, where the energy norm suffices for convergence.
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Spectral instability in hydrodynamics

Linear perturbations around stationary flow:4

No growing modes

Spectral instability

Long-lived modes – very close to real
axis (close the higher R is)

Pseudospectral contour lines expand to
the unstable (growing mode) half of
the complex plane

Full non-linear evolution shows
instability

4Trefethen et al., Hydrodynamic stability without eigenvalues, Science 261, 578
(1993).
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Pseudospectrum of an ECO with surface at E = 10−3

Linear perturbations on an ECO with a
reflective surface:

No growing modes

Spectral instability

Long-lived modes – very close to real
axis (closer the more compact the
object is)

Pseudospectral contours expand to the
“unstable” (growing mode) half of the
complex plane

Full non-linear evolution shows
instability5
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Pseudospectrum of an ℓ = 2 scalar
perturbation on an ECO with a reflective
surface at r = (1 + E)2M, with E = 10−3.

5Dailey, Afshordi, Schnetter, Reflecting boundary conditions in numerical relativity as
a model for black hole echoes, arXiv:2301.05778
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Fundamental mode zoom

The protrusion of the contour lines to
the “unstable” side could imply that:

physically perturbing system leads
to modes which grow

initially small solutions have a
period of transient growth

small sources could be
pseudo-resonantly amplified

All three of these are present in the
hydrodynamic system mentioned. But
what about ECOs?
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Perturbed ECO spectrum
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No unstable modes after physical perturbation (adding noise to the discretised
effective potential, magnitude ∥δL∥ ∼ 10−1).
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Transient evolution bound
Transient growth: norm of the evolution operator ∥e iLτ∥ bigger than 1?

This norm is bounded by the Kreiss constant,

K(L) = lim
ϵ→∞

αϵ(L)

ϵ
, with αϵ(L) = − inf

λ∈σϵ(L)
Im(λ). (10)

Numerically we find that αϵ(L)/ϵ→ 1,
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which indicates that the evolution operator e iLτ is contractive (no transient
growth).
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Pseudoresonances

The final possibility: pseudoresonances

(∂τ − iL) u(1) = S (1) (11)

The maximal amplification of a source with frequency Ω is given by

∥(L− ΩI)−1∥,

coinciding with the prescription for the pseudospectrum at λ = Ω.
However, the instability is expected even when S (1) = 0.

As it turns out, in an appropriate gauge the equation for the second order
perturbation is6

(∂τ − iL) u(2) = S (2)[u(1)]. (12)

A Fourier transform decomposes S (2) into modes e iΩt , with Ω proportional to
(the real part of) the frequencies of u(1).

→ Pseudoresonance between different orders (breakdown of perturbation
theory)

6J. L. Jaramillo, Class.Quant.Grav. 39 (2022) 21, 217002
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Summary (part 2)

The pseudospectrum of the linear evolution operator can be used to gauge
the presence of non-linear instabilities.

The dynamical instability of ECOs is characterised by neither a displacement
of modes to the unstable half of the complex plane after a perturbation, nor
by non-modal transient growth (as occurs e.g. in hydrodynamics).

Rather, pseudoresonances can be produced between different orders in
perturbation theory. The closer the QNMs are to the real axis (i.e. the more
compact the ECO), the more likely it is for this phenomenon to lead to a
breakdown in the perturbation theory.
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Outlook

The pseudospectrum of QNMs can be used to gain insight into a variety of
problems in gravitational physics.

Due to non-convergence in the energy norm, its use is not as straightforward
as might have been expected, though this leads to other open questions (do
we change our definition of QNM spectrum, or our notion of a physical
norm?).

All projects mentioned are still works in progress, and there are many other
open problems still (e.g. the pseudospectrum beyond spherical symmetry).

Thank you for your attention!
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