Asymptotics in General Relativity The role of spatial infinity

Juan A. Valiente Kroon **Queen Mary University of London** Virtual Infinity Seminar, February 9th 2024

Overview Key ideas in this talk

- The relation between the asymptotic behaviour of the gravitational at null infinity and spatial infinity —the problem of spatial infinity.
- Penrose's conditions to study isolated systems in General Relativity are too restrictive to describe generic spacetimes.
- A conformal approach to the structure of spatial infinity by H. Friedrich paves the way to a full understanding of the relation between Cauchy data and the asymptotic behaviour of the gravitational field —thus settling the problem of spatial infinity.
- Applications of these ideas to the computation of asymptotic charges.

Introduction Asymptopia

Asymptopia A far away land of which we know little... (JM Stewart)

- There is a vast literature on the asymptotics of the gravitational field.
- GR using the notion of *asymptotic simplicity*.
- may or may not be generic.

Builds on Penrose's characterisation of isolated systems in

Most of it formal: it makes a number of assumptions which

Understanding the assumptions A vast body of work aimed at setting the asymptotics of GR on a solid footing

- H Friedrich, JAVK,...
- P Chrusciel, R Beig & BG Schmidt,...
- D Christodoulou & S Klainermann, Klainermann & Nicolo, Lindblad & Rodnianski,...
- P Hintz & A Vasy
- L Kehrberger,...

Not comprehensive!

Although great progress has occurred in recent years, some work is still required!

Some (historical) context Asymptotic simplicity (AS) R Penrose 1963-65

Definition 7.1 (asymptotically simple spacetimes) A spectrum (\mathcal{M}, \tilde{g}) is said to be asymptotically simple if there exists a smooth, oriented, timeoriented, causal¹ spacetime (\mathcal{M}, g) and a smooth function Ξ on \mathcal{M} such that:

(i) \mathcal{M} is a manifold with boundary $\mathscr{I} \equiv \partial \mathcal{M}$. (*ii*) $\Xi > 0$ on $\mathcal{M} \setminus \mathscr{I}$, and $\Xi = 0$, $\mathbf{d}\Xi \neq 0$ on \mathscr{I} . (iii) There exists an embedding $\varphi : \tilde{\mathcal{M}} \to \mathcal{M}$ such $\varphi^* \boldsymbol{g} = \Xi^2 \tilde{\boldsymbol{g}}.$

(iv) Each null geodesic of (\mathcal{M}, \tilde{g}) acquires two distinct endpoints on \mathscr{I} .

h that
$$\varphi(\tilde{\mathcal{M}}) = \mathcal{M} \setminus \mathscr{I}$$
 and

Motto:

Provide a geometric framework to study the asymptotics of the gravitational field!

${\cal J}$ is 60! Original ideas about the notion of asymptotic simplicity date to around 1963

Asymptotics and conformal methods in general relativity

9 – 10 May 2023

Organised by Dr Juan Valiente Kroon and Dr Grigalius Taujanskas

THE ROYAL SOCIETY

Image: © Caspar David Friedrich, with addition by Paul Tod.

Key aspect The smoothness of \mathscr{I}

Smoothness at \mathscr{I}^\pm

Corollary:

Restricted smoothness

Decay of fields (peeling)

Modified decay

Peeling What do we mean exactly?

adapted to a foliation of outgoing light cones satisfy

 $\int \infty$

$$\tilde{\psi}_0 = O\left(\frac{1}{\tilde{r}^5}\right), \quad \tilde{\psi}_1 = O\left(\frac{1}{\tilde{r}^4}\right), \quad \tilde{\psi}_2 = O\left(\frac{1}{\tilde{r}^3}\right), \quad \tilde{\psi}_3 = O\left(\frac{1}{\tilde{r}^2}\right), \quad \tilde{\psi}_4 = O\left(\frac{1}{\tilde{r}}\right),$$

where \tilde{r} is a suitable parameter along the generators of the light cones.

Smoothness is assumed here!

Theorem 1. Let (\mathcal{M}, \tilde{g}) denote a vacuum asymptotically simple spacetime with vanishing Cosmological constant. Then the components of the Weyl tensor with respect to a frame

 $(\mathcal{M}, \boldsymbol{g})$

Penrose (1965)

Some natural questions **Genericity and the Cauchy problem**

i. How large is the class of spacetimes with a smooth Penrose compactification?

ii. How to construct the spacetime from, eg Cauchy initial data? What extra conditions are required?

The problem of spatial infinity

The presence of mass produces a singularity of the conformal structure at i^0

Semiglobal stability of the Minkowski spacetime Friedrich (1986)

For suitable hyperboloidal data one can recover a smooth \mathscr{I}^+ on $D^+(\mathcal{H}_{\downarrow})$

What about Cauchy data?

Global non-linear stability of the Minkowski spacetime D Christodoulou & S Klainerman (1990)

Cannot recover peeling! Non-smooth $\mathcal{I}^+!$

Is this a technical problem or there is something more fundamental?

Gluing techniques PT Chrusciel & E Delay (2005)

Minkowski.

Use the Corvino-Schoen gluing techniques together with Friedrich's semi-global stability to construct AS spacetimes

'Schwarzschild data

Regular asymptotic initial value problem at spatial infinity H Friedrich (1998)

A detailed study of the structure of spatial infinity from the point of view of an IVP

> Regular The equations and

data are regular at spatial infinity

The cylinder at spatial infinity Friedrich (1998) — see also Ashtekar & Hansen (1978), Beig & Schmidt (1984)

S. conformal Gauss gauge J.

Relation to Ashtekar's framework for spatial infinity — M Magdy & JAVK, (2021)

The cylinder at spatial infinity

All the evolution equations reduce to transport equations on the cylinder I

Data on $I_{\star} \iff$ Solutions at I^{\pm}

Solution jets: $J[\phi^{(p)}] = \{(\partial_{\rho}^{p}\phi)|_{I}\}$

The cylinder I is a total characteristic of the (conformal) Einstein field equations

Obstructions to the smoothness of \mathscr{I} Null infinity is generically non-smooth!

The regularity of the coefficients $\phi^{(p)}$ can be explicitly computed (modulo computational complexities)

Data needs to be fine-tuned to obtain suitably regular solutions

Logarithmic divergences at $I^{\pm}!!$ -H. Friedrich (1998), JAVK (2004)

$$\tilde{h} = \Omega^{-4}h$$

$$\Omega(i) = 0, \quad d\Omega_{X}(\underline{i} \neq \chi \theta_{i}) \quad Horeover, u is under the intervention of the component is the compone$$

$$> 0$$

 $h_{\alpha\beta} = -\delta_{\alpha\beta} + b(|x|^3).$

(2017)

 $\tilde{\psi}_4 = 2O($

$egin{aligned} & lpha(i) = 0 \ & \Omega \in C^2 \end{aligned}$

e non-smoothness of \mathscr{I} t peel! Time symmetric data!

Assumption 1. The metric **h** satisfies the boundary conditions (11) with a conformal factor $\Omega \in C^2(S) \cap C^{\infty}(S \setminus \{i\})$. Moreover, it is analytic in a neighbourhood of *i* and there exists $cq\rho rdip q r s_{\Omega} x = g(x_{0}^{\alpha})$ for which the components of **h** satisfy (12).

(11)
(12)

Under assumption 2, given time symmetric initial data satisfying assumption 1, ons imply that

$$(\tilde{r}^{-3} \ln \tilde{r}),$$

 $(\tilde{r}^{-3} \ln \tilde{r}),$
 $(\tilde{r}^{-3} \ln \tilde{r}),$
 $(\tilde{r}^{-2}),$
 $(\tilde{r}^{-1}).$

U/|x|

Some further examples i) = 0, **Regularity improves as one fine-tunes the data...**

(ii) If

Theorem 3. Under assumption 2, given time symmetric initial data satisfying assumption 1, the *F*-expansions are such that:

(*i*) *If*

$$b_{ij}(i)=0,$$

then

$$\begin{split} \tilde{\psi}_0 &= O(\tilde{r}^{-4} \ln \tilde{r}), \\ \tilde{\psi}_1 &= O(\tilde{r}^{-4} \ln \tilde{r}), \\ \tilde{\psi}_2 &= O(\tilde{r}^{-3}), \\ \tilde{\psi}_3 &= O(\tilde{r}^{-2}), \\ \tilde{\psi}_4 &= O(\tilde{r}^{-1}). \end{split}$$

$$b(i) = 0,$$
 $D_{\{b_{i}\}}(i) = 0,$ (iii) The c

$$O r^{-5} r$$
,

~

$$b_{ij}(i) = 0, \qquad D_{\{k}b_{ij\}}(i) = 0,$$

$$egin{aligned} & ilde{\psi}_0 = O(ilde{r}^{-5}\ln ilde{r}), \ & ilde{\psi}_1 = O(ilde{r}^{-4}), \ & ilde{\psi}_2 = O(ilde{r}^{-3}), \ & ilde{\psi}_3 = O(ilde{r}^{-2}), \ & ilde{\psi}_4 = O(ilde{r}^{-1}). \end{aligned}$$

classical peeling behaviour is obtained if

 $b_{ij}(i) = 0,$ $D_{\{k}b_{ij\}}(i) = 0,$ $D_{\{k}D_{l}b_{ij\}}(i) = 0.$

The role of time independent solutions Is stationarity near *i*⁰ the only possibility?

Stationary spacetimes are as regular near spatial infinity in as one would expect — in particular, **the solutions do not have logarithmic singularities!**

Is there any type of rigidity implied by smoothness at spatial infinity?

Polyhomogeneous spacetimes **P Hintz & Vasy (2019)**

Global non-linear stability of the Minkowski spacetime with polyhomogeneous expansions

Logarithms in the expansions

Not sharp but an important step forward! Relies on techniques of Melrose's school of microlocal analysis

Why care? A framework to study spatial infinity

The conclusions from the analysis of i^0 are generic — i.e. independent from the set up of stability

Friedrich's cylinder at spatial infinity provides a framework for the study of asymptotic charges and other observables and their relation to initial data!

BMS charges and i^0

BMS charges The symmetry group of \mathscr{I} is the BMS (Bondi-Metzner-Sachs) group

Asymptotic symmetries:

Solutions to the asymptotic Killing equations Transformations of \mathscr{I} preserving structure

Why we care? The AS-GM-SGT triangle...

Credit: Mariem Magdy AM

$\begin{array}{l} \textbf{Supertranslations} \\ \textbf{Reparametrising the null generators of } \mathcal{S} \end{array}$

Of particular interest are supertranslations (reparametrisations of cuts of cuts of cuts of S)

The Newman-Penrose gauge ET Newman & R Penrose (1965), J Stewart (1984)

A choice of coordinates, frame and conformal scaling adapted to the geometry of \mathscr{I}^+

The NP gauge A closer look...

- $\overrightarrow{e}'_{00'}$ tangent to \mathscr{F}^+ and $\nabla_{11'} \overrightarrow{e}'_{11'} = 0$ • $\overrightarrow{e}_{11'}(u) = 1 \text{ on } \mathscr{I}^+$
- $\overrightarrow{e'}_{00'} = (\mathrm{d}u)^{\sharp}$

The conformal freedom and residual freedom in the frame can be used to fix some components of the connection and Ricci tensor

The spin-2 equations

BMS charges for the spin-2 field M Magdy AH & JAVK (JMP 2022)

Non-conservation of the charges The value of the charges differs from cut to cut...

 $Q_1 \neq Q_2$ for two cuts C_1 and C_2

A similar computation can be carried out on

The BMS charges at i^0 Taking things to the limit...

What happens if one considers the limit of \mathscr{C} approaching the **critical** sets where \mathscr{I}^{\pm} meets i^0 ?

Under which conditions are the limits well defined?

Are the charges on \mathcal{I}^+ and \mathscr{I}^- related in some way?

Matching problem!

Stroeminger, Henneaux & Troessaert, Prabhu...

The initial value problem at spatial infinity Study the matching problem for the BMS charges using an IVP...

Use Friedrich's representation of spatial infinity

Advantage: assumptions controlled in terms of initial data

Write the charges in terms of **free data**

Friedrich's cylinder at spatial infinity The geometric setup...

The F (Friedrich)-gauge A conformal Gaussian system...

Based on a non-intersecting congruence of **conformal geodesics** in a neighbourhood of *i*⁰

Well propagated along the conformal geodesics

$$= \{ \tau = 1 \} \\ = \{ \tau = -1 \}$$

Relating the NP and F gauges Friedrich & Kánnár (2000)

related via

and

$$\Lambda^{\mathbf{1}}_{\mathbf{0}} = \frac{2e^{i\omega}}{\sqrt{\rho}(1+\tau)},$$
$$\Lambda^{\mathbf{1}}_{\mathbf{1}} = \Lambda^{\mathbf{0}}_{\mathbf{0}} = 0,$$

where ω is an arbitrary real number that encodes the spin rotation of the frames on \mathbb{S}^2 . For the NP-gauge frame at \mathscr{I}^- , the roles of the vectors $e'_{00'}$ and $e'_{11'}$ are interchanged, and NP-gauge frame is related to the F-gauge by equation (3) with $\Lambda^{A}{}_{B}$ given by

$$\Lambda^{\mathbf{1}}_{\mathbf{0}} = \frac{e^{-i\omega}\sqrt{\rho}(1-\tau)}{2}, \qquad \Lambda^{\mathbf{0}}_{\mathbf{1}} = \frac{2e^{i\omega}}{\sqrt{\rho}(1-\tau)},$$
$$\Lambda^{\mathbf{1}}_{\mathbf{1}} = \Lambda^{\mathbf{0}}_{\mathbf{0}} = 0.$$

Proposition 1. The NP-gauge frame at \mathscr{I}^+ and F-gauge frame in the Minkowski spacetime are

 $e'_{AA'} = \Lambda^B{}_A \bar{\Lambda}^{B'}{}_{A'} e_{BB'},$

$$\Lambda^{\mathbf{0}}_{\mathbf{1}} = \frac{e^{-i\omega}\sqrt{\rho}(1+\tau)}{2},$$

(4)

(3)

(5)

The BMS charges at I^{\pm} Assumptions...

Existence of solutions of this form can be established using certain type of estimates (G Taujanskas & JAVK, 2023)

Key assumption: near *I* one has a solution of the form $\phi_2 = \sum a_{\ell m}(\tau)Y_{\ell m} + o(\rho)$

Boosted data! Usually one has $aY_{00} + o(\rho)$

The subheading terms can be controlled

The cylinder at spatial infinity as a total characteristic M Magdy AM & JAVK (2022)

Legendre polynomial

The coefficients $a_{\ell m}(\tau)$ can be explicitly computed from transport equations on *I*. For example: $(1 - \tau^2)\ddot{a}_{\ell m} - 2\tau\dot{a}_{\ell m} + \ell(\ell + 1)a_{\ell m} = 0$

Regularity at I^{\pm} One needs to fine-tune the data...

characterised by the conditions: $a_{\ell m}(0) = 0$ for ℓ odd $\dot{a}_{\ell m}(0) = 0$ for ℓ even

These conditions can be characterised in terms of free data for the spin-2 field

Third order operator, Andersson, Bäckdahl & Joudioux (2014)

One can find a ψ_{ABCD} (free data) satisfying the regularity conditions

The BMS charges in terms of the data The limits are generically not well-defined...

If the solutions are well of • $\mathcal{Q}|_{I^+} = -2\bar{a}_{\ell m}(1)$ • $\mathcal{Q}|_{I^-} = -2\bar{a}_{\ell m}(-1)$

> Moral take away: the limits are generically not well-defined unless one fine-tunes the data!

If the solutions are well defined at I^{\pm} one finds that:

Identifying the charges at \mathscr{T}^+ **and** \mathscr{T}^- No need of the antipodal identification...

When the charges are well-defined at I^{\pm} one has that: • $Q^+ = Q^-$ for ℓ even • $Q^+ = - Q^-$ for ℓ odd

The antipodal matching is, in fact, a regularity condition!

The BMS charges in GR (M Magdy AM, K Prabhu & JAVK, to appear in JMP)

The BMS charges for the Weyl tensor In full non-linear GR corrections appear...

In this case the charges are given by: $\begin{aligned}
\mathcal{Q} &= \oint_{\mathscr{C}} \lambda \left(\phi_2 + \frac{1}{2} \sigma^{ab} N_{ab} \right) \mathrm{d}S, \\
\text{with:} \\
\bullet & \sigma_{ab} \text{ the shear tensor on } \mathscr{F}^+ \\
\bullet & N_{ab} \equiv 2(\pounds_n - \Phi) \sigma_{ab} \\
\bullet & \Phi \equiv \frac{1}{4} \left(\nabla_a n^a \right) |_{\mathscr{F}^+}
\end{aligned}$

 n^a null geodesic generator of \mathscr{I}^+

Choosing the initial data L-H Huang CQG 27, 245002 (2010)

 $\left(\frac{x_{\alpha}x_{\beta}}{r^2} - \frac{1}{2}\delta_{\alpha\beta}\right) + O_2(r^{-1-q}),$ $B_{\beta}x_{\alpha} + (B^{\gamma}x_{\gamma})\delta_{\alpha\beta}) + O_1(r^{-2-q}),$ $\tilde{\pi}_{ij} = \tilde{K}_{ij} - \tilde{K}\tilde{h}_{ij}.$ (58)

$$\tilde{h}_{\alpha\beta} = -\left(1 + \frac{A}{r}\right)\delta_{\alpha\beta} - \frac{\alpha}{r}$$

$$\tilde{\pi}_{\alpha\beta} = \frac{\beta}{r^2}\frac{x_{\alpha}x_{\beta}}{r^2} + \frac{1}{r^3}\left(-B_{\alpha}x_{\beta} - \frac{\beta}{r}\right)$$

Proposition 2. For any $\alpha, \beta \in C^2(\mathbb{S}^2)$ and $q \geq 1$, there exists a vacuum initial data set $(\tilde{h}, \tilde{\pi})$ where the components of \tilde{h} and $\tilde{\pi}$ with respect to the standard Euclidean coordinate chart $\{x^{\alpha}\}$ have the following asymptotics: where A, $\{B_{\alpha}\}_{\alpha=1}^3$ are some constants, $r = \sqrt{(x^1)^2 + (x^2)^2 + (x^3)^2}$ and $\tilde{\pi}$ is the momentum tensor, related to $\tilde{\boldsymbol{K}}$ by

$$\tilde{\pi}_{ij} = \tilde{K}_i$$

The proof makes use of gluing techniques!

Computation of asymptotic expansions Use again the total characteristic at spatial infinity...

Caveat: the expansions are formal! One needs to adapt the methods of linear fields to GR or adapt the analysis of Hintz & Vasy. For the above class of initial data one can make use of the properties of the cylinder *I* to compute asymptotic expansions of all the relevant fields:

 $\phi_{ABCD}, \sigma_{ab}, N_{ab}$ $\Lambda^{A}_{B}, \vartheta$

Give the transformation between frames

Structure of the asymptotic expansions **GR** behaves like spin-2 field...

The leading behaviour of ϕ_2 is given by $\phi_2 = \sum a_{\ell m}(\tau) Y_{\ell m} + O(\rho),$ $\ell = 0 \ell = -m$ with, again, $a_{\ell m}(\tau) = \mathfrak{a}_{\ell m} P_{\ell}(\tau) + \mathfrak{b}_{\ell m} Q_{\ell}(\tau)$

Logarithmic divergences!

Crucially, one has that $\sigma_{ab}|_{\mathcal{I}^{\pm}} \to 0$ as one approaches I^{\pm}

The structure of the charges at I^{\pm} is formally the same as for the spin-2 field!

Take away: the regularity of the solutions is controlled by conditions on the multipolar structure of α

Regularity of the solutions The charges are, generically, not well defined...

Regular solutions are obtained if the odd parity harmonics (ℓ odd) in α vanish!

Only BMS super translation charges with ℓ even have non-trivial information!

Identifying the BMS charges at I⁺ and I⁻ The role of the initial data...

The BMS charges at I^{\pm} (when defined) are given in terms of the multipolar structure of α

No antipodal map required for this! Only sufficient regularity for the charges to be well defined...

This establishes the identification between Q^+ and Q^-

Conclusions & outlook

Conclusions Key take away messages...

Friedrich's representation of spatial infinity can be used to understand the assumptions behind asymptotic

Some of the standard assumptions are non-generic!

Assumptions on free Cauchy data are ok!

Outlook What lies ahead?

Wrap up H. Friedrich's programme with rigorous statements on the relation of asymptotic expansions and solutions to the Einstein field equations

Want to know more?

Thank you for your attention!