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Overview
Key ideas in this talk

® The relation between the asymptotic behaviour of the gravitational at
null infinity and spatial infinity —the problem of spatial infinity.

® Penrose’s conditions to study isolated systems in General Relativity
are too restrictive to describe generic spacetimes.

® A conformal approach to the structure of spatial infinity by H. Friedrich
paves the way to a full understanding of the relation between Cauchy
data and the asymptotic behaviour of the gravitational field —thus
settling the problem of spatial infinity.

® Applications of these ideas to the computation of asymptotic charges.



Introduction



Asymptopia

A far away land of which we know little... (JM Stewart)

* There Is a vast literature on the asymptotics of the
gravitational field.

* Builds on Penrose’s characterisation of isolated systems In

GR using the notion of asymptotic simplicity.

 Most of it formal: it makes a number of assumptions which
may or may not be generic.




Understanding the assumptions

A vast body of work aimed at setting the asymptotics of GR on a solid footing

H Friedrich, JAVK,...
P Chrusciel, R Beig & BG Schmidt,...

D Christodoulou & S Klainermann, Klainermann & Nicolo, Lindblad &
RodnianskKi,...

P Hintz & A Vasy Although great progress
has occurred In recent
years, some work is still
required!

L Kehrberger,...

| Not comprehensive!




Some (historical) context
Asymptotic simplicity (AS) R Penrose 1963-65

Definition 7.1 (asymptotically simple spacetimes) A spetime (M, g) is
satd to be asymptotically simple if there exists a smooth, oriented, time-

oriented, causal' spacetime (M,g) and a smooth function = on M such
that:

(i) M is a manifold with boundary ¢ = OM.
(i) 2 >0 on M\ .7, and Z=0,d=#0 on .#.

(iii) There exists an embedding ¢ : M — M such that o(M) = M\ . and

v g = =°g.

(iv) Each null geodesic of (M, §) acquires two distinct endpoints on Z.




Motto:

Provide a geometric
framework to study the

asymptotics of the
gravitational field!




7 1S 60!

Original ideas about the notion of asymptotic simplicity date to around 1963
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Key aspect

The smoothness of .¥

Corollary:

Restricted
smoothness

| s

Modified decay




Peeling Smoothness is

What do we mean exactly? assumed here!

Theorem 1. Let (M,Q) denote a vacuum asymptotically simple spacetime with vanish-

ing Cosmological constant. Then the components of the Weyl tensor with respect to a frame
adapted to a foliation of outgoing light cones satisfy

ZZ():O(%), 1;1=0<;4), ¢2=0<%), @320(}%), 1;420(%),

where 1 is a suitable parameter along the generators of the light cones.

Penrose (1965)




Some natural questions

Genericity and the Cauchy problem

. How large is the class of
spacetimes with a smooth
Penrose compactification?

(h,&)? i. How to construct the spacetime
from, eg Cauchy initial data”’
What extra conditions are required?




The problem of spatial infinity

The presence of mass produces a singularity of the conformal structure at i

Penrose, 1965




Semiglobal stability of the Minkowski spacetime
Friedrich (1986)

For suitable hyperboloidal data
one can recover a smooth ¥+

on D™(H )

What about Cauchy
data?

M—




Global non-linear stability of the Minkowski spacetime
D Christodoulou & S Klainerman (1990)

Cannot recover peeling!
Non-smooth ¥ ™!

Is this a technical problem or
there is something more
fundamental?




Gluing techniques

PT Chrusciel & E Delay (2005)
Use the Corvino-Schoen

4 gluing techniques together
| pev-tunloatfons o with Friedrich’s semi-global
| Minkowak ;. stability to construct AS
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Regular asymptotic initial value problem at spatial infinity

H Friedrich (1998)
A detailed study of the

structure of spatial infinity
from the point of view of an

The equations and
data are regular at
spatial infinity




The cylinder at spatial infinity

Friedrich (1998) —see also Ashtekar & Hansen (1978), Beig & Schmidt (1984)

v = -
s,:?z,— |

L

Relation to Ashtekar’s
framework for spatial

infinity —M Magdy &
JAVK, (2021)




The cylinder at spatial infinity

The cylinder / is a total characteristic of the (conformal) Einstein field equations

All the evolution equations T
reduce to transport

equations on the cylinder /

Data on I, <= Solutions at I

Solution jets: J[¢P] = {(0 "N




Obstructions to the smoothness of .7

Null infinity is generically non-smooth!

The regularity of the

coefficients ¢'”) can be
explicitly computed

(modulo computational _ — n
complexities) Logarithmic divergences at /!

—H. Friedrich (1998), JAVK (2004)

Data needs to be fine-tuned to obtain

suitably regular solutions




Consequences of the non-smoothness of .7

Non-smooth solutions may not peel!

Time symmetric data!

Assumption 1. The metric h satisfies the boundary conditions (11) with a conformal fac-
tor Q € C*(S) N C>®(S \ {i}). Moreover, it is analytic in a neighbourhood of i and there ex-
ists coordinates x = (x) for which the components of h satisfy (12).

(i) = 0, dQ(i) = 0, Hess €2(i) = —2h(i), (11)

hap = —0ap + O(|x]). (12)

Theorem 2. Under assumption 2, given time symmetric initial data satisfying assumption I,
the F-expansions imply that

| / U1 = O(F 3 1n ),

vy = O(F 3 1n¥),
E Gasperin & JAVK s = 0(F?),
?7;4 = 0(7’_1).

(2017)




Some further examples

Regularity improves as one fine-tunes the data...

Theorem 3. Under assumption 2, given time symmetric initial data satisfying assumption I,
the F-expansions are such that:

(1) If
b;(i) =0
then () 1y
Jo— 0~ bi(i) =0,  Dybi (i) =0
U1 = O(F *1n¥), then
hy = O(F ), do = O(F 5 In7),
by = O(F2), D= 0(F%),
thy = O(F ). ¢:0G>
= 0(i?),
104 o).

(iii) The classical peeling behaviour is obtained if

bi(i) =0, Dby (i) =0,

D Dby (i)

= 0.



The role of time independent solutions

Is stationarity near " the only possibility?

Stationary spacetimes are as regular near
spatial infinity in as one would expect —In
particular, the solutions do not have
logarithmic singularities!

Is there any type of rigidity implied by
smoothness at spatial infinity?




Polyhomogeneous spacetimes
P Hintz & Vasy (2019)

Global non-linear stability of
the Minkowski spacetime

Logarithms in the expansions

with polyhomogeneous
expansions

Not sharp but an important step

forward! Relies on techniques of
Melrose’s school of microlocal analysis




Why care?

A framework to study spatial infinity

The conclusions from the analysis of

i are generic —i.e.independent

from the set up of stabillity

Friedrich’s cylinder at spatial infinity provides
a framework for the study of asymptotic

charges and other observables and their
relation to initial data!




BMS charges and i"



BMS charges

The symmetry group of .7 is the BMS (Bondi-Metzner-Sachs) group

Asymptotic symmetries:

* Solutions to the asymptotic Killing equations
» Transformations of . preserving structure




Why we care?
The AS-GM-SGT triangle...

Credit: Mariem Magdy AM



Supertranslations

Reparametrising the null generators of .7

o Of particular interest are
supertranslations
(reparametrisations of

cuts of cuts of %)

Smooth function
on € ~ S?



The Newman-Penrose gauge
ET Newman & R Penrose (1965), J Stewart (1984)

A choice of coordinates, frame and
conformal scaling adapted to the

geometry of ¥




The NP gauge

A closer look...

XxX="=(u,r,0,p) (Bondicoordinates)

-

—
{l’, n,m',m'} = {7€\y, €115 €n1n €10}

=

. € tangentto S and Ve, =0
¢ ?11(1/!) — 1 Onj_l_

. € ()()' — (du)1j e The conformal freedom and residual
freedom In the frame can be used to

fix some components of the
connection and Riccl tensor




The spin-2 equations




BMS charges for the spin-2 field

M Magdy AH & JAVK ( JMP 2022)

A _ _
\ AABCD = 0, Papcp = CD)

¢, the Coulomb field

The BMS charge
associated to a a super § /

translation on a cut € of
Z T is given by

= K Prabrlu

) a smooth function on S?

e.g. Y, (spherical harmonics)




Non-conservation of the charges

The value of the charges differs from cut to cut...

@1 # @2 for two
cuts %land %2

A similar computation
can be carried out on

-




The BMS charges at ;"

Taking things to the Iimit...

What happens if one considers the
limit of € approaching the critical

sets where .+ meets {92

Under which conditions are the
limits well defined?

Are the charges on . and
¥~ related in some way?




The initial value problem at spatial infinity
Study the matching problem for the BMS charges using an IVP...

Use Friedrich’s
4 representation of

spatial infinity

Advantage: assumptions
controlled Iin terms of
Initial data

Write the charges
INn terms of free
data




Friedrich’s cylinder at spatial infinity

The geometric setup...




The F (Friedrich)-gauge , Based on a non-intersecting

_ congruence of conformal
A conformal Gaussian system...

geodesics in a
(7, p, x7)

neighbourhood of "
(Tan) = (L, 7,7, 7)

Well propagated along the

conformal geodesics

In this gauge:




Relating the NP and F gauges

Friedrich & Kannar (2000)

Proposition 1. The NP-gauge frame at . and F-gauge frame in the Minkowski spacetime are
related via

614,4/ = ABAAB,A’GBB’a (3)
and
1 2e' 0o 6_“"\/5(1 + ’7')
A 0 — 9 A 1 — ’
ﬁ(l -+ 7') 2
All — AOO — 07 (4)

where w is an arbitrary real number that encodes the spin rotation of the frames on S*. For the

NP-gauge frame at Z~, the roles of the vectors egy and e7,, are interchanged, and NP-gauge
frame is related to the F-gauge by equation (3) with A g given by

—w 1 — W
Alo — - \/ﬁ( T)a Aol — o )
2 Vol —7)
Aty = A% =0. (5)




The BMS charges at [~

Assumptions...

Key assumption: near / one has a solution of the form
4

Z A (T) Y g + 0(p)

3o0osted data! Usually one has
aXy, + o(p)

Existence of solutions of this form can _
be established using certain type of The subheading terms

estimates (G Taujanskas & JAVK, 2023) can be controlled




The cylinder at spatial infinity as a total characteristic
M Magdy AM & JAVK (2022)

The coefficients a,, (7) can be explicitly computed from transport equations

on /. For example:
(1 - t%)i,,, — 2ta,, + (¢ + a,, =0

The general solution is:

Legendre function of
Gpy(T) = A, Pp(T) + Dy, Qp(7)

the second kind

Legendre polynomial

QA1) =c,In(1 £7)+ O(1)




Regularity at /-

One needs to fine-tune the data...

Proposition. The regular solutions at /= are
characterised by the conditions:

e a,,(0) =0 for £ odd
e d,,(0) =0 for £ even

(Gauss constraint:

These conditions can be
characterised in terms of free data
for the spin-2 field

’

One can find a y, 5 (free data)
satisfying the regularity conditions

Third order operator,

Andersson, Backdahl &
Joudioux (2014)




The BMS charges in terms of the data

The limits are generically not well-defined...

If the solutions are well defined at I™ one finds that:
. @l =—2a,,(1)
° @ ‘I_ — dem(—l)

Moral take away: the limits are
generically not well-defined unless one
fine-tunes the data!




ldentifying the charges at .#* and .7~

No need of the antipodal identification...

When the charges are well-defined at / * one has that:
e QT = @ for £ even
e QT = — @ for £ odd

The antipodal matching is, in fact,
a regularity condition!




The BMS charges in GR

(M Magdy AM, K Prabhu & JAVK, to appear in JMP)



The BMS charges for the Weyl tensor

In full non-linear GR corrections appear...

In this case the charges are given by: ¢, the Coulomb component of

the rescaled Weyl tensor

Q = ﬂg /l(qbz + lG“bNab)dS,
- 2

— -1
¢ABCD = 0 \PABCD

Wiigh
+ 0,, the shear tensor on #
® Clb — 2(£n N @)Uab

o= (V) /?b

c\
_ \

R

) a smooth function over S?




Choosing the initial data
L-H Huang CQG 27, 245002 (2010)

Proposition 2. For any «, 8 € C?(S?) and ¢ > 1, there exists a vacuum initial data set (h,7)
where the components of h and 7 with respect to the standard Euclidean coordinate chart {z“}
have the following asymptotics:

4
P,
~ A a (zaxg 1 g
hap = — (1 + ?7505 - ( ;" 25a@) + Os(r ),
y 4
~ ,B/wa:c5 1 . Y —2—q
Tapg = 2 2 3 (—Bapg — BgZo + (BY2y)0ap) + O1(r ),

where A, {B,}2_, are some constants, r = 4/(z!)2 + (22)? + (23)? and 7 is the momentum

tensor, related to K by 3 .
Ti; = Kij — Khij. (58)

The proof makes use of

gluing techniques!




Computation of asymptotic expansions

Use again the total characteristic at spatial infinity...

For the above class of initial data one can

make use of the properties of the cylinder /

to compute asymptotic expansions of all
the relevant fields:

¢ABCD9 O.bs Nab
Ay 9

Caveat: the expansions are formal Give the transformation
One needs to adapt the methods of between frames
inear fields to GR or adapt the
analysis of Hintz & Vasy.




Structure of the asymptotic expansions
GR behaves like spin-2 field...

The leading behaviour of ¢, is given by

¢2 — i i afm(T)Yfm T O(p),

£=0¢=—m
with, again,

The structure of the charges at = is

formally the same as for the spin-2
field!

Take away: the regularity of the solutions is
controlled by conditions on the multipolar structure

of o




Regularity of the solutions

The charges are, generically, not well defined...

Regular solutions are obtained if the

odd parity harmonics (£ odd) in a
vanish!

Only BMS super translation charges
with £ even have non-trivial information!




ldentifying the BMS charges at /™ and /-

The role of the initial data...

The BMS charges at /™ (when defined)
are given in terms of the multipolar

structure of

This establishes the identification

between @ and @~

No antipodal map required for this!
Only sufficient regularity for the chargesy
to be well defined...




Conclusions & outlook



Conclusions

Key take away messages...

* Friedrich’s representation of spatial infinity can be used to
understand the assumptions behind asymptotic

 Some of the standard assumptions are non-generic!

* Assumptions on free Cauchy data are ok!




Outlook

What lies ahead?

Wrap up H. Friedrich’s programme with
rigorous statements on the relation of
asymptotic expansions and solutions to the
Einstein field equations




Want to know more?




Thank you for your attention!



