Studying black hole ringdown with
hyperboloidal methods

Infinity Seminar

Justin Ripley
University of lllinois Urbana-Champaign & ICASU



Why study black hole ringdown?

1. Remnant BH: mass M,
i Quasi-circular Plunge Ringdown
spin a inspiral and merger
2. Model ringdown with

'S
quasinormal modes . /‘ <‘ ‘>( ij

(QNMs):

h(t) ~ Z e /i sin (w;t)

3. Black hole perturbation

theory Black hole
Post-Newtonian Numerical perturbation
-7 (/\/]7 a) , Wi (/\/]7 3) techniques relativity ~ methods

Baumgarte+Shapiro 2010

Black hole spectroscopy: reconstructing the remnant
black hole mass/spin from measured quasinormal modes
(Detweiler 1980, Dreyer+ 2004, Berti+ 2006, Carullo+ 2019, Isi+ 2021, ...)



What'’s the problem?

Data analysis:

1. There are many quasinormal modes: which ones to fit to the
ringdown?

2. When does ringdown “start”?
Modeling:
1. How well do the quasinormal modes describe the ringdown?
2. Non-mode contributions from nonlinearities (Einstein equations)

3. Non-mode contributions from linear solution



1. Modeling ringdown with black hole perturbation theory +
quasinormal modes

2. Quasinormal modes + boundary conditions
3. Hyperboloidal slicings of Kerr

4. Horizon penetrating, hyperboloidally compactified (HPHC)
coordinates and quasinormal modes

4.1 Open source implementations: https://github.com/JLRipley314

5. Application: measuring quasinormal modes


https://github.com/JLRipley314

Modeling black hole ringdown

Final state: Kerr black hole + gravitational waves

Kerr black hole (Boyer-Lindquist coordinates)
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Ringdown: small perturbations about remnant black hole

(Kerr) (1)
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Linear black hole perturbation theory

Linear perturbation of metric

Kerr 2
8op = gfyg it eg{glg) + Ezgfyg) +0 ().

Linear perturbation of equations of motion

Kerr
Ruv [8ag] = R/(L(I)/) [gé/ie )} + ER/(LlV) [ Sﬂ)]

+RW [¢9)] + R® [69,£5] + ().
Look for mode solutions to the linearized Einstein equations

RO [el] =0 &) (t.r.0,0) ~ &8 (r,6,9)



Equation of motion for linearized curvature perturbation

Teukolsky equation (Teukolsky 1973)

T Wi =0
2, 22
+a 4M
() a’sin® 0| 07w — A29, (A*T19,V) + Tarataww
a? a(r—M)

+ X5V - DGV —2s—=——0,V¥

M (r2 — 32) .
-2s | ———2% —r—jacosf| 0;V = 0.

A

v — \ufﬁ) (s = —2): complex, linearized Newman-Penrose scalar

(Newman+-Penrose, 1962)

\Ilgl) completely describes dynamical part of linearly perturbed metric
g (Chrzanowski 1975, Wald 1978)



Teukolsky equation + quasi-normal modes

1. Quasi-normal modes: mode-like solutions to Teukolsky equation

W) = e MR (1) S (6) .

2. Teukolsky equation separates

d’R dR

MmEE B GR=AR,
d?s ds

A27d92 ol 32@ + GS = AS.

3. Quasi-normal modes: solution separated equations + satisfy outgoing
(wave) boundary conditions



Boundary conditions (Schwarzschild black holes)

1. Tortoise coordinate
r
=r+2M] (— - 1) .
[ r—+ n M
Note: lim,_,, r. = —o0, and lim,_, r, = +00
2. Ingoing boundary condition at black hole horizon

lim W o emlttr) (1400

ry—>—00
3. Outgoing boundary condition at future null infinity

1 .
lim \IJEI) o —efwlt=r) (1+--)
r

Fe—>00

4. Quasinormal modes: w, R, S that satisfy separated equations +
boundary conditions

= Quasinormal eigenfunction (QNE): \Ilfll)

= Quasinormal mode (QNM): w



Indexing of QNMs

50— . .
Wip],£,m,n 40r i
S\SOV |
=
' 20+ / 1
[p]: prograde vs. retrograde
=3
¢: angular quantum number 10k , ,
m: azimuthal angular quantum =2
g q o= /><\v\\
40 05 00 05 10
number 2Ma,
]
n: overtone number Berti-+ 2000
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Quasinormal modes in hyperboloidal coordinates

Zenginoglu Phys.Rev.D 83 (2011) 127502
JLR Class.Quant.Grav. 39 (2022) 14, 145009
https://github.com/JLRipley314/TeukolskyQNMFunctions.jl
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https://github.com/JLRipley314/TeukolskyQNMFunctions.jl

Quasinormal modes

Y = Ae WM R (1) S (6).
Decaying mode: Zw < 0 =
P ~ Ae %t cos (Rwt) (1 +---).
Outgoing boundary condition at future null infinity

] A
lim ¢ ~e @t (140,

ry —>00 r
—> blowup as r — oo

A
lim ) ~ e 2@t cos (Rw (t — ) - (14---).

re—00
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Resolution

1. Is this a problem? No

2. No *

real physics” at t = const., r — o0
Causally disconnected from the interior of the spacetime

Blowup is an artefact of looking at a damped infinite wave solution

over the entire spacetime
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Resolution

1. Transform to outgoing null coordinate

uUu==t—r.

2. Outgoing boundary condition at future null infinity

3. No more blowup when u = const., r — oo; wave decays as u — o0

A
lim )~ e_I““cos(Rwu)7 (1+---).

s« —>00
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Resolution

What about the ingoing solution?

: A
lim ¢ ~ e @1 4.0,
r

r—o0

Change to outgoing null coordinate

u==t—rg.

Does not blow up, but does oscillate infinite number of times as
r— 0o

. . A
I|m 17[} ~ eflwu72lwr* " (l 4. ) )

r—oo r
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Similar story for QNMs near the black hole horizon

Ingoing boundary condition near black hole horizon ry

lim ¢ oc e @) (1 4.1,

Fy—>—00
Change to ingoing null coordinate

v=t+r..

Ingoing (to horizon) solution regular at horizon

lim 9 oce ™ (14---).

r——00
Outgoing solution is regular, but oscillates an infinite number of times

fimpoc eT R (1)
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Compactified solution

1. Compactify r,, e.g.
X

V1—x2'

2. Solutions that obey boundary conditions: regular, finite differentiable
at the boundaries x = +1.

oy =

3. Satisfy correct boundary conditions:
iy A

wu

fimo e ).
lim ¢ ~e @ (1+4--.).

x——1
4. Don't satisfy correct boundary conditions:
. A
lim w ~ eflwu72lwr* - (1 4. ) )
x—1 r

lim g~ e (14,
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Coordinates for Kerr (e.g. Macedo 2019)

it

H*: future horizon:

{u— oo, t, r finite}

Causally connected to the
interior J*: future null infinity:
{v — o0, u finite}

Causally connected to the
interior iT: timelike infinity:

{t — oo, rfinite}

Causally connected to the
interior % spatial infinity:

{r — oo, t finite}

Causally connected to JF, J—,
iT, i~ B: bifurcation sphere:
{r. — —oo, t finite}

Causally connected to Ht, H ™,

iT, i~ Boyer-Lindquist
18

coordinates: constant time



HPHC coordinates for Kerr (e.g. Macedo 2019)

Horizon penetrating, hyperboloidally compactified (HPHC) coordinates

it

1. HPHC coordinates: interpolate
between horizon penetrating
near 1", and outgoing null (u)
near J+

2. QNMs are regular in these
coordinates (Zenginoglu 2011,
JLR 2022)
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HPHC coords + Teukolsky eqn. (Macedo 2019, JLR 2022)

1. Teukolksy equation in Boyer-Lindquist coordinates:

TV = 0.

2. Transform to ingoing coordinates

2M
dvzdt—&—Tr, d(bzdgp—i—%dr.
3. Rescale ng)
1
'(/} = ;AQ\UE&)

4. Define "hyperboloidal time variable” 7

dTEdt+@dr, @Ef 1Jrﬂ .
dr dr r

5. Radially compactify

©
If
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QNMs in HPHC coordinates

1. Decompose )

Y= e “THMR (p) S (6).

2. Teukolsky equation separates,

d’R dR

A]'Tp2 + B].dip + C]_R = /\S7
d*S dS
A2ﬁ + 32% + GS = AS.

3. QNM solutions: find the w for which there is a regular solution R, S
to the separated equations.

= w: quasinormal mode

= ) quasinormal eigenfunction: regular from H' to J on fixed 7
hypersufaces
21



Regular QNM eigenfunctions

https://github.com/JLRipley314/TeukolskyQNMFunctions.jl

d’R dR

Al—s +Bi— + GGR=AR
1d,02+ 1d,0+ 1 ;
d?S ds

Ar—— + Bo— =AS.
2d92+ 2d9+C25 S

1. Find w, R, S that satisfy the simultaneous eigenvalue problem from
separation constant A

2. Spectral discretiation of S equation in terms of spin-weighted
spherical harmonics (Cook+Zalutskiy 2014)

3. Spectral discretiation of R equation in terms of ultraspherical
polynomials (Olver 4+ Townsend 2012)

4. Both discretizations: “automatically” impose correct boundary
conditions

5. Incorporating improved radial spectral representation from

ApproxFun. j1: Hengrui Zhu 2


https://github.com/JLRipley314/TeukolskyQNMFunctions.jl

Regular QNM eigenfunctions
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QNMs in HPHC coordinates

https://github.com/JLRipley314/TeukolskyQNMFunctions. jl
Collaborator: Hengrui Zhu (graduate student, Princeton University)

More input/pull requests welcome! (improve algorithms, etc)
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Application: measuring QNMs

With HPHC coordinates, can for the first time study exact
(superpositions of ) QNM initial data

How well (in principle) can you measure the QNM content of
an arbitrary ringdown signal?

Challenges in Quasinormal Mode Extraction: Perspectives from Numerical solutions
to the Teukolsky Equation

Hengrui Zhu®,%2-* Justin L. Ripley®,® Alejandro Cardenas-Avendano®,"? and Frans Pretorius®:?
! Department of Phys
2 Princeton G

3 llinois Ce

Uni

s, Princeton University, Jadwin Hall, Washington Road, New Jersey, 08544, USA
y Initiative, Princeton University, Princeton, New Jersey, 08544, USA
er for Advanced Studies of the Univer ¥ Department of Physics,
ty of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
(Dated: October 9, 2023)
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The problem

Sl

Quasinormal modes are not complete
Linear theory: there are non-mode solutions to the Teukolsky equation
There are nonlinearities in solutions to full Einstein equations

Could non-mode contributions bias your measurement of the
quasinormal modes?

26



What modes are present in the ringdown from binary coales-

cence?

Testing the no-hair theorem with GW150914

Maximiliano Isi,! * Matthew Giesler,? Will M. Farr,®* Mark A. Scheel,> and Saul A. Teukolsky??

'LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

2TAPIR, Walter Burke Institute for Theoretical Physics,

Clalifornia Institute of Technology, Pasadena, CA 91125, USA

3Center for Computational Astrophysics, Flatiron Institute, 162 5th Ave, New York, NY 10010
* Department of Physics and Astronomy, Stony Brook University, Stony Breok NY 11794, USA

®Cornell Center for Astrophysics and Planetary Science,

Cornell University, Ithaca, New York 14853, USA
(Dated: August 12, 2019)

We analyze gravitational-wave data from the first LIGO detection of a binary black-hole merger
(GW150914) in search of the ringdown of the remnant black hole. Using observations beginning
at the peak of the signal, we find evidence of the fundamental quasinormal mode and at least one
overtone, both associated with the dominant angular mode (£ = m = 2), with 3.60 confidence. A
ringdown model including overtones allows us to measure the final mass and spin magnitude of the
remnant exclusively from postinspiral data, obtaining an estimate in agreement with the values
inferred from the full signal. The mass and spin values we measure from the ringdown agree with

Analysis of Ringdown Overtones in GW150914

Roberto Cotesta,’ Gregorio Carullo,>* Emanuele Berti,! and Vitor Cardoso® ¢

! Department of Physics and Astronomy, Johns Hopkins University,
3400 N. Charles Street, Baltimore, Maryland, 21218, USA
2 Dipartimento di Fisica “Enrico Fermi”, Universita di Pisa, Pisa I-56127, Italy
3INFN sezione di Pisa, Pisa I-56127, Italy
alisches Institut, Friedrich-Schiller-Universitit Jena, Frobelstieg 1, 07743 Jena, Germany 27
"CENTRA, Departamento de Fisica, Instituto Superior Técnico — IST,
TTlmamercidade Ae Ficharn — TTT  Amemides Raasviern Pade 1 1070 001 T ichan Partarcanl
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1. What modes can we measure in an idealized (numerical) setting?
2. QNM initial data in HPHC coordinates

https://github.com/JLRipley314/ TeukolskyQNMFunctions jl
3. Linear evolution code in HPHC coordinates

https://github.com/JLRipley314/ TeukEvolution.jl
4. Fixed black hole background (M, a do not change)
5. Numerical “laboratory”

= Pure QNM initial data

= Non-QNM initial data
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https://github.com/JLRipley314/TeukolskyQNMFunctions.jl
https://github.com/JLRipley314/TeukEvolution.jl

Time evolution code

1. https://github.com/JLRipley314/TeukEvolution.jl

2. Solve Teukolsky equation in time domain

T = 0.

3. Decompose ng)eim¢: 2 41 evolution for each m-mode

4. Spectral decomposition in spin-weighted spherical harmonics in the
angular directions

5. Finite difference in radial direction
6. Method of times (4™ order Runge-Kutta) in time direction

7. Incorporating exact QNM initial data from
TeukolskyQNMFunctions. j1: Hengrui Zhu
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https://github.com/JLRipley314/TeukEvolution.jl

Fitting quasinormal modes: traditional approach

= Find best best fit to
extrapolated waveform at future

null infinity
2.0
(1) —iwe, m,nt
v, ~ E Ag,m e “mnt, .
é7m7n 1.0

= Minimize quadratic residual
(least squares)

min Z (Ag,m,pe 0emnt — s(t))2

Ae,m,n
o 4,m,n
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Taking only information at future null infinity

Do not look at radial
information: losing valuable
signal-to-noise in fit

Could a signal “look like" at
QNM at a fixed radius, but
differ as the radius changes?
HPHC coordinates:
straightforward way to
incorporate radial information
the QNM fit

in
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Bilinear form (least squares) QNM fit

1. Define the mode (fixed m mode)

P en (o, pj, i) =€ Ry o 1 () S (awippems Ok) -

2. QNM fit
Wy (ti, pj, 0k) = Z Al e Pol e.n (ti5 ) Ok)
p,n,tl
04 (ti, pj, 0k) = Z Allme (—iwppen) Prolen (i 0y Ok) -
p,n,l

3. Write as matrix equation (/: (i,j, k); J: [p], ¢, n)

\U/ M/_j 0
(&W,) ( 0 _iUJJM[J> / il

4. Find A,: matrix inversion

By
A, =Nt
’ Y <atw’> 32



Bilinear form (least squares) QNM fit

2. Time-only fit: fix j, k

3. Fixed time fit: fix i

4. Whole domain fit: sum over i,j, k
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Bilinear form (least squares) QNM fit

1. Matrix equation (I (i,j, k); J: [p], %, n)

2. Linear regression ~ minimize quadratic residual

2 2
r= Z (‘Ul = Z AJ¢U> + Z <3t‘|f/ + Z iWJAJq)IJ) 2
J ] J

1J

WARNING: the QNMs are not complete.
This method will fit modes to non-mode components to solution.

NOTE: we do something slightly different in 2309.13204 (projection
along spherical harmonics).
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“Stability” of a fit (London+ 2014, London 2018, Baibhav +

2023)

Sl S

How does the fit for A, change with time?

Fixed time fit: |A, (t;)| eZ«/t
Time interval fit: |A, (¢, t;,)| eF«/4
Constant A, (with time): have measured a QNM

Varying Aj: fitting a mode to non-mode component to the solution
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Numerical experiment: pure QNM initial data

Initial data: pure sum of QNMs

1 im
\Ug ) =0 = Z A[p].[,m,nR[p].,Z,m,n (P) Sf,m (aw[p].[,m,m 9) e (ba
[6], &,
8“"5‘1)‘ = D —iwpemnAlplemnRiplemn (0) St (a6 m,n, 6) €7
[p],(,mm

No non-mode contributions to signal.
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Numerical experiment: pure QNM ini

Initial data: pure sum of QNMs

n=0
n=1
n=2
n=3
n=4
n=5
108 - AN g
A A
3 \\‘/\/\/-\/
10710_ /\/\/v
<
1 NN
10712 4 . , N r
0 10 20 30 40 50

Time (M)

60
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“Stability” of fit

Rescale each mode by expected decay |A|e“t

10*

An

10-2 4

10*4 4

— spatial fit
——- spacetime fit

1076+ T
0 10

Time (M)

Modes initially not in initial data are always unstable 38



Numerical experiment: pure QNM initial data

Initial data: Gaussian-like pulse

—1 2
vl —exp |- (2—2) ) Lvi(e
2’| o eXP( ( w 2 Y (0),
2
vl P v )
Vs =0 2+4pap< < T:o)

Non-mode contributions to initial data.
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“Stability” of fit: spatial fitting vs time-only fitting

Rescale each mode by expected decay

-+ time-only fit
—— spatial fit

200

Spatial fitting at a fixed time more stable that fitting time only over a
S 40
finite time interval.



Closer look at time-only fit

1.

Time-only fit appears to be less stable (does not give consistent fit
except for 1-2 modes)

To evaluate accuracy of time-only fit

2.1 Compute time-only fit at several different, finite radii and at future
null infinity

2.2 Family of amplitudes — A(p;)

If fitting a QNM, then expect

A(pi) = AR (p)

Judge how close this is to being true by calculating

(A(p),R(p))

MEL GO AW) RO RG) |

(a,b) = [dpa(p) b(p)
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Mismatch for time-like fits

Mismatch as a function of the start time

a=0
10°
10-2
= 1070
10-°
1012
80
a=0.7
107124 —t —— T T T v
10 20 30 40 50 60 70 80
10t a=0.999
10-2

S5 5 3535

10-°

wN oo

10°® T

to (M) 42



Conclusions from experiments

1. Considered an idealized scenario: linearized evolution about Kerr
black hole background

2. With pure QNM initial data, can extract modes easily

3. With more complicated initial data, difficulties extracting more than
1-2 modes when using a time-only fit (no radial information)

4. Including radial information greatly stabalizes QNM fitting
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Potential extension to nonlinear codes

1. Do not consider entire domain—consider radial information in the
radiation zone, where gravitational fields are weak

2. Does not need to be hyperboloidal-characteristic coordinates would
also work (e.g. Cauchy Characteristic Extraction codes; Ma+ 2023)

'
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Conclusion

1. QNMs regular, well behaved functions in HPHC coordinates
2. Can study exact QNM initial data in HPHC coordinates

3. Can use radial QNM information in HPHC coordinates — more
robust QNM fitting

4. Future work

= Radial fits in nonlinear codes

= Exact QNM initial data for second order perturbative codes
5. More detals

= Zhu+ 2309.13204, JLR 2202.03837

= Evolution code hetps://github.com/JLRipley314/ TeukEvolution.

= QNM code https://github.com/ILRipley314/TeukolskyQNMFunctions.jl
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https://github.com/JLRipley314/TeukEvolution.jl
https://github.com/JLRipley314/TeukolskyQNMFunctions.jl

Backup slides




Newman-Penrose formalism

Complex, null tetrad

/;u Ny My, My,

Metric—tetrad
8w = 2lunyy —2mg,my)
Derivatives— directional derivatives
D) = P A=n'V,, 0=m"vV,
Christoffel symbols—Ricci rotation coefficients; e.g.
o=m"m"V,l,

Curvature tensors—Curvature scalars; e.g.

— =V O =
Y, = Cupapn”m’n mP



NP Equations of motion

Projections of higher derivative equations
Projections of R, — 3guwR = T
Projections of V* (R, — g, R) =0
Projections of "V, ,n" — ntV IV = - .-
1. Disadvantage: Lots of variables and complicated equations

2. Advantage(s): Have ten degrees of freedom (not just four) to
choose

= Four gauge (coordinate) degrees of freedom to set x"
= Six tetrad degrees of freedom /., n,, m,, m,

3. With a good choice of tetrad, the linearized Einstein equations take a

simple form around Kerr black holes



