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Introduction

d
Given an evolution equation zl: = A(u) with initial data #(0) we want to
understand what happens as t — o

The set of possible endstates is ‘smaller’ than the set of initial data
= dynamical asymptotic simplification

Soliton resolution conjecture: for generic global-in-time solutions of
nonlinear dispersive wave equations on unbounded domains

u(r) ~ Y Qi+ radiation  for 1 — oo

where the ‘solitons’ Q; are asymptotically decoupled.

The conjecture has been proved for some integrable equations and
recently for radial critical wave equations (Jendrej-Lawrie, Merle et al.).
There is also extensive numerical and experimental evidence.

This talk: soliton resolution in a simple geometric setting employing
hyperboloidal foliations.
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Outline

@ Model: equivariant wave maps on the (d + 1) — dimensional wormhole
@ Static solutions
© Soliton resolution for d > 3 (B-Kahl, Rodriguez)

© Soliton resolution for d = 2 (work in progress with Jendrej and Maliborski)

Related work: soliton resolution for Yang-Mills (B-Cownden-Maliborski)



Wormhole
@ Manifold M = {t € R, (r,0) € R x S?~!} with metric
ds* = —di* + dr? +f2(r) da)szd,l, finy=vr*+a*

@ Hypersurfaces t = const have two asymptotically flat ends at r — £
connected by a neck of area 4a® at r = 0.




Wave maps on a wormhole

@ Amap X : M — N from a Lorentzian manifold (M,gaﬁ) into a Riemannian

manifold (N, Gap) is the wave map if it is a critical point of the action
S[X] = / %P e XA 3pXE Gy
M
@ The wave map equation
X+ The(X)daXPIpX g™ =0
where I’a are the Christoffel symbols of G4p.
@ Our model:
» Domain M: the wormhole with metric
ds* = —di* +dr* + (r* + %) d(ogd,l
» Target: N = S with the round metric ds? = dU? + sin® U d6>

§d—1

@ Equivariant ansatz: we assume that U = U(t,r),0 = xx(®), where
2 2 8471 = 5971 is a harmonic map with eigenvalue A, = k(k+d —2)
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Equivariant wave map equation

(d—1)r Ay sin(2U)

Un=Un+ 2ra " 2 P2+a?

The length scale a removes the singularity at r = 0, ensuring
global-in-time regularity. Below we seta = 1.

Let r = sinhx and u(z,x) = U(t,r). Then
2 A
cosh“xuy = uy, + (d —2) tanhxu, — 5 sin(2u)

Conserved energy
1 oo
E(u) = > / (cosh®xuj +u; + A sin’u) (coshx)?~2dx

—oo

Finite energy requires that u(z, —eo) = mm, u(t,o0) = nm (m,n € 7).

We choose m = 0 so n determines the topological sector (degree).

Our aim is describe the asymptotic behavior of solutions for ¢ — oo.
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Static solutions

@ Static solutions u(x) satisfy the ODE

A
"+ (d—2)tanhxu — 5" sin(2u) =0

@ For d > 3 this describes a particle in the potential V = —ﬂ sin® u
subject to ‘time’-dependent friction.
1%
ﬁ .
n 2n

@ By elementary shooting argument, for each n there exists a unique
solution u = Q,(x) such that Q,,(—) = 0 and Q,,(«0) = nm.

@ (, is a minimizer of energy for given n = Lyapunov stability



Static solutionsind =2

k2
u' — = sin(2u) =0

In the degree one sector we have

1 1
E(u)zil (2 + K sin u) dx:§/7 (u — ksinu)® dx-+2k > 2k

This inequality is saturated on the kink solution u = Q(x) = 2arctan ()

translation

O(x) = Qc(x) = Q(x—¢)

Kink is a degenerate minimizer of energy = orbital stability

For n > 1 there are no static solutions and E(u) > nE(Q) = 2nk.
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Hyperboloidal formulation (due to Friedrich and Zenginoglu)
@ Lett=s+coshx. Then

Ugs + 2 sinh xugy, + (coshx + (d — 2) tanhxsinh x) ug
A
= Uy + (d — 2) tanhxu, — Ek sin(2u)

@ Asymptotic behaviour for smooth initial data of degree n

d—1

b_(s)ez* for x — —oo,
u(s,x) ~ d-1
nw+by(s)e” 2% for x— oo

4=2y, one gets dyp + df = 0, where

@ Multiplying by (coshx
p= [uf + u? + A sin’ ul (coshx)?2, f= [sinhxuf — Uiy | (coshx)?—2

@ Defining the energy & (u) = [ p dx, we get the energy loss formula
s
ds
@ What is the limit & = lim,_,e & (u(s))?
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Soliton resolution (d = 3)

For any smooth initial data of degree n there exists a unique smooth global
solution which asymptotically converges to the kink Q,,.

@ Heuristics and numerical evidence (B-Kahl 2015)
@ Proof (Rodriguez 2016)
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Soliton resolution conjecture in d =2

@ Joint work with Jacek Jendrej and Maciej Maliborski (in preparation)
@ We conjecture that solutions converge either to zero (if n = 0)
or to a N-chain of kinks and antikinks

N
u(s,x) = Y 0,0 —¢(s)),  lej1(s) —¢i(s)| = o
j=1

Here the signs 0; = 1 correspond to kinks and antikinks, respectively.

@ &.=NE(Q) =2Nk. Here N = n+2m, where m is the number of
kink-antikink pairs created in the evolution.

@ Analogous result for equivariant wave maps from 2 + 1 Minkowski
spacetime into the two-sphere was proved by Jendrej and Lawrie 2021.

@ Below we consider the n =0 and n = 1 cases.
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Asymptotically static solutions

@ As the first step in understanding the global phase portrait, we determine
the behavior of solutions at the threshold of the kink-antikink creation.
They separate basins of attractions of different N-chains.

@ The threshold solutions are asymptotically static when viewed in the
coordinates (z,x) i.e. their kinetic energy goes to zero for r — .

@ Finite dimensional analogue: Newton’s equation
X(t) = F(x(¢)) with x(r)z —0 as t— o

Here asymptotically static solutions describe parabolic motions.

@ The asymptotically static kink-antikink pair (called the two-bubble) was
proved to exist for equivariant wave maps from 2 + 1 Minkowski
spacetime into the two-sphere by Jendrej and Lawrie 2020.
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Conjecture
There exist asymptotically static N -chains the form

O(x) + fl(—l)"[Q(Hc]( N+0(x—ci(r))], N=2K+1
u(t,x) = -

L (-1 [0(x+61)) - Q= (1), N—2K

where cj(t) = o andc; K ¢ K -+ L cy.

Example N =5 u

=30 -20 -10 t 10 20 30

T

@ We have numerical and analytic evidence for N =2,3,4,5.
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Method of collective coordinates
@ Plugging the (2K + 1)-chain into the Lagrangian (for k = 2)

oo

1
7 = 3 / (coshzxut2 —u? — 4 sin’ u) dx

—o0

we get the reduced Lagrangian (where ¢y = 0)

K
~ 202 _ —2(¢j—¢j-1)
L~ Z eIe; Z e
j=1 j=1

>

@ This approach omits radiation, hence it is expected to work only if
radiation is negligible.

@ Letr; = e%. Then we get the K-body problem on a half-line

K :
L~Y#-v, v=-Y21

Jj=1 J r

K ;2
—1 j
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@ Equations of motion (where ro = 1 and rg; = o)

2
.. I ¥ .
HE—tg gy e K
T

@ For each K there exists a zero energy asymptotically self-similar solution
such that for t — o

K+1
VK

rj(t) ~ (At)K%l, where A=

» For K =1 this solution is exact.
» For K > 2 the solution can be constructed by a perturbation method.

@ Threshold solutions of the PDE (for N = 2,3,4,5) are very well
approximated for ¢ — oo by the reduced ODE model.
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Summary

@ The soliton resolution for d 4 1 equivariant maps into S¢ is well
understood in d > 3.

@ For d = 2 there are only partial results. Quantitative agreement between
the PDE numerics and the ODE approximation is a promising first step.

@ The hyperboloidal approach has been helpful in numerical computations
of long time dynamics, however has not been used as an analytic tool.

@ Many open mathematical problems, e.g. modulation analysis of the
interaction of the kink with radiation

u(t,x) = Qc(r) () + M (1,x)
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