Soliton resolution on a wormhole

Piotr Bizoń
Jagiellonian University

Dedicated to the memory of Bernd Schmidt

10 November 2023

Introduction

- Given an evolution equation $\frac{d u}{d t}=A(u)$ with initial data $u(0)$ we want to understand what happens as $t \rightarrow \infty$
- The set of possible endstates is 'smaller' than the set of initial data \Rightarrow dynamical asymptotic simplification
- Soliton resolution conjecture: for generic global-in-time solutions of nonlinear dispersive wave equations on unbounded domains

$$
u(t) \sim \sum_{i} Q_{i}+\text { radiation } \quad \text { for } t \rightarrow \infty
$$

where the 'solitons' Q_{i} are asymptotically decoupled.

- The conjecture has been proved for some integrable equations and recently for radial critical wave equations (Jendrej-Lawrie, Merle et al.). There is also extensive numerical and experimental evidence.
- This talk: soliton resolution in a simple geometric setting employing hyperboloidal foliations.

Outline

(1) Model: equivariant wave maps on the $(d+1)$ - dimensional wormhole
(2) Static solutions
(3) Soliton resolution for $d \geq 3$ (B-Kahl, Rodriguez)
(9) Soliton resolution for $d=2$ (work in progress with Jendrej and Maliborski)

Related work: soliton resolution for Yang-Mills (B-Cownden-Maliborski)

Wormhole

- Manifold $M=\left\{t \in \mathbb{R},(r, \omega) \in \mathbb{R} \times \mathbb{S}^{d-1}\right\}$ with metric

$$
d s^{2}=-d t^{2}+d r^{2}+f^{2}(r) d \omega_{S^{d-1}}^{2}, \quad f(r)=\sqrt{r^{2}+a^{2}}
$$

- Hypersurfaces $t=$ const have two asymptotically flat ends at $r \rightarrow \pm \infty$ connected by a neck of area $4 \pi a^{2}$ at $r=0$.

Wave maps on a wormhole

- A map $X: M \mapsto N$ from a Lorentzian manifold $\left(M, g_{\alpha \beta}\right)$ into a Riemannian manifold $\left(N, G_{A B}\right)$ is the wave map if it is a critical point of the action

$$
S[X]=\int_{M} g^{\alpha \beta} \partial_{\alpha} X^{A} \partial_{\beta} X^{B} G_{A B}
$$

- The wave map equation

$$
\square_{g} X^{A}+\Gamma_{B C}^{A}(X) \partial_{\alpha} X^{B} \partial_{\beta} X^{C} g^{\alpha \beta}=0
$$

where $\Gamma_{B C}^{A}$ are the Christoffel symbols of $G_{A B}$.

- Our model:
- Domain M : the wormhole with metric

$$
d s^{2}=-d t^{2}+d r^{2}+\left(r^{2}+a^{2}\right) d \omega_{S^{d-1}}^{2}
$$

- Target: $N=\mathbb{S}^{d}$ with the round metric $d s^{2}=d U^{2}+\sin ^{2} U d \theta_{S^{d-1}}^{2}$
- Equivariant ansatz: we assume that $U=U(t, r), \theta=\chi_{k}(\omega)$, where $\chi_{k}: S^{d-1} \mapsto S^{d-1}$ is a harmonic map with eigenvalue $\lambda_{k}=k(k+d-2)$
- Equivariant wave map equation

$$
U_{t t}=U_{r r}+\frac{(d-1) r}{r^{2}+a^{2}} U_{r}-\frac{\lambda_{k}}{2} \frac{\sin (2 U)}{r^{2}+a^{2}}
$$

- The length scale a removes the singularity at $r=0$, ensuring global-in-time regularity. Below we set $a=1$.
- Let $r=\sinh x$ and $u(t, x)=U(t, r)$. Then

$$
\cosh ^{2} x u_{t t}=u_{x x}+(d-2) \tanh x u_{x}-\frac{\lambda_{k}}{2} \sin (2 u)
$$

- Conserved energy

$$
E(u)=\frac{1}{2} \int_{-\infty}^{\infty}\left(\cosh ^{2} x u_{t}^{2}+u_{x}^{2}+\lambda_{k} \sin ^{2} u\right)(\cosh x)^{d-2} d x
$$

- Finite energy requires that $u(t,-\infty)=m \pi, u(t, \infty)=n \pi(m, n \in \mathbb{Z})$. We choose $m=0$ so n determines the topological sector (degree).
- Our aim is describe the asymptotic behavior of solutions for $t \rightarrow \infty$.

Static solutions

- Static solutions $u(x)$ satisfy the ODE

$$
u^{\prime \prime}+(d-2) \tanh x u^{\prime}-\frac{\lambda_{k}}{2} \sin (2 u)=0
$$

- For $d \geq 3$ this describes a particle in the potential $V=-\frac{\lambda_{k}}{2} \sin ^{2} u$ subject to 'time'-dependent friction.

- By elementary shooting argument, for each n there exists a unique solution $u=Q_{n}(x)$ such that $Q_{n}(-\infty)=0$ and $Q_{n}(\infty)=n \pi$.
- Q_{n} is a minimizer of energy for given $n \Rightarrow$ Lyapunov stability

Static solutions in $d=2$

$$
u^{\prime \prime}-\frac{k^{2}}{2} \sin (2 u)=0
$$

- In the degree one sector we have

$$
E(u)=\frac{1}{2} \int_{-\infty}^{\infty}\left(u^{\prime 2}+k^{2} \sin ^{2} u\right) d x=\frac{1}{2} \int_{-\infty}^{\infty}\left(u^{\prime}-k \sin u\right)^{2} d x+2 k \geq 2 k
$$

- This inequality is saturated on the kink solution $u=Q(x)=2 \arctan \left(e^{k x}\right)$
- $Q(x) \xrightarrow{\text { translation }} Q_{c}(x)=Q(x-c)$
- Kink is a degenerate minimizer of energy \Rightarrow orbital stability
- For $n>1$ there are no static solutions and $E(u)>n E(Q)=2 n k$.

Hyperboloidal formulation (due to Friedrich and Zenginoğlu)

- Let $t=s+\cosh x$. Then

$$
\begin{array}{r}
u_{s s}+2 \sinh x u_{s x}+(\cosh x+(d-2) \tanh x \sinh x) u_{s} \\
=u_{x x}+(d-2) \tanh x u_{x}-\frac{\lambda_{k}}{2} \sin (2 u)
\end{array}
$$

- Asymptotic behaviour for smooth initial data of degree n

$$
u(s, x) \sim \begin{cases}b_{-}(s) e^{\frac{d-1}{2} x} & \text { for } \quad x \rightarrow-\infty \\ n \pi+b_{+}(s) e^{-\frac{d-1}{2} x} & \text { for } \quad x \rightarrow \infty\end{cases}
$$

- Multiplying by $(\cosh x)^{d-2} u_{s}$, one gets $\partial_{s} \rho+\partial_{x} f=0$, where

$$
\rho=\left[u_{s}^{2}+u_{x}^{2}+\lambda_{k} \sin ^{2} u\right](\cosh x)^{d-2}, \quad f=\left[\sinh x u_{s}^{2}-u_{s} u_{x}\right](\cosh x)^{d-2}
$$

- Defining the energy $\mathscr{E}(u)=\int_{-\infty}^{\infty} \rho d x$, we get the energy loss formula

$$
\frac{d \mathscr{E}}{d s}=-\dot{b}_{-}^{2}-\dot{b}_{+}^{2}
$$

- What is the limit $\mathscr{E}_{\infty}=\lim _{s \rightarrow \infty} \mathscr{E}(u(s))$?

Soliton resolution ($d=3$)

For any smooth initial data of degree n there exists a unique smooth global solution which asymptotically converges to the kink Q_{n}.

- Heuristics and numerical evidence (B-Kahl 2015)
- Proof (Rodriguez 2016)

Soliton resolution conjecture in $d=2$

- Joint work with Jacek Jendrej and Maciej Maliborski (in preparation)
- We conjecture that solutions converge either to zero (if $n=0$) or to a N -chain of kinks and antikinks

$$
u(s, x) \simeq \sum_{j=1}^{N} \sigma_{j} Q\left(x-c_{j}(s)\right), \quad\left|c_{j+1}(s)-c_{j}(s)\right| \rightarrow \infty
$$

Here the signs $\sigma_{j}= \pm 1$ correspond to kinks and antikinks, respectively.

- $\mathscr{E}_{\infty}=N E(Q)=2 N k$. Here $N=n+2 m$, where m is the number of kink-antikink pairs created in the evolution.
- Analogous result for equivariant wave maps from $2+1$ Minkowski spacetime into the two-sphere was proved by Jendrej and Lawrie 2021.
- Below we consider the $n=0$ and $n=1$ cases.

$n=0$

$n=1$

Asymptotically static solutions

- As the first step in understanding the global phase portrait, we determine the behavior of solutions at the threshold of the kink-antikink creation. They separate basins of attractions of different N-chains.
- The threshold solutions are asymptotically static when viewed in the coordinates (t, x) i.e. their kinetic energy goes to zero for $t \rightarrow \infty$.
- Finite dimensional analogue: Newton's equation

$$
\ddot{x}(t)=F(x(t)) \quad \text { with } \quad \dot{x}(t)^{2} \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty
$$

Here asymptotically static solutions describe parabolic motions.

- The asymptotically static kink-antikink pair (called the two-bubble) was proved to exist for equivariant wave maps from $2+1$ Minkowski spacetime into the two-sphere by Jendrej and Lawrie 2020.

Conjecture

There exist asymptotically static N-chains the form

$$
u(t, x)= \begin{cases}Q(x)+\sum_{j=1}^{K}(-1)^{j}\left[Q\left(x+c_{j}(t)\right)+Q\left(x-c_{j}(t)\right)\right], & N=2 K+1 \\ \sum_{j=1}^{K}(-1)^{j}\left[Q\left(x+c_{j}(t)\right)-Q\left(x-c_{j}(t)\right)\right], & N=2 K\end{cases}
$$

where $c_{j}(t) \rightarrow \infty$ and $c_{1} \ll c_{2} \ll \cdots \ll c_{N}$.
Example $N=5$

- We have numerical and analytic evidence for $N=2,3,4,5$.

Method of collective coordinates

- Plugging the $(2 K+1)$-chain into the Lagrangian (for $k=2$)

$$
\mathscr{L}=\frac{1}{2} \int_{-\infty}^{\infty}\left(\cosh ^{2} x u_{t}^{2}-u_{x}^{2}-4 \sin ^{2} u\right) d x
$$

we get the reduced Lagrangian (where $c_{0}=0$)

$$
L \approx \sum_{j=1}^{K} e^{2 c_{j}} \dot{c}_{j}^{2}-\sum_{j=1}^{K} e^{-2\left(c_{j}-c_{j-1}\right)}
$$

- This approach omits radiation, hence it is expected to work only if radiation is negligible.
- Let $r_{j}=e^{c_{j}}$. Then we get the K-body problem on a half-line

$$
L \approx \sum_{j=1}^{K} \dot{r}_{j}^{2}-V, \quad V=-\sum_{j=1}^{K} \frac{r_{j-1}^{2}}{r_{j}^{2}}
$$

- Equations of motion (where $r_{0}=1$ and $r_{K+1}=\infty$)

$$
\ddot{r}_{j}=-\frac{r_{j-1}^{2}}{r_{j}^{3}}+\frac{r_{j}}{r_{j+1}^{2}}, \quad j=1, \ldots, K
$$

- For each K there exists a zero energy asymptotically self-similar solution such that for $t \rightarrow \infty$

$$
r_{j}(t) \sim(A t)^{\frac{j}{K+1}}, \quad \text { where } \quad A=\frac{K+1}{\sqrt{K}}
$$

- For $K=1$ this solution is exact.
- For $K \geq 2$ the solution can be constructed by a perturbation method.
- Threshold solutions of the PDE (for $N=2,3,4,5$) are very well approximated for $t \rightarrow \infty$ by the reduced ODE model.
$N=5$

Summary

- The soliton resolution for $d+1$ equivariant maps into S^{d} is well understood in $d \geq 3$.
- For $d=2$ there are only partial results. Quantitative agreement between the PDE numerics and the ODE approximation is a promising first step.
- The hyperboloidal approach has been helpful in numerical computations of long time dynamics, however has not been used as an analytic tool.
- Many open mathematical problems, e.g. modulation analysis of the interaction of the kink with radiation

$$
u(t, x)=Q_{c(t)}(x)+\eta(t, x)
$$

